Spaces:
Running
Running
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from torch.nn import Conv1d, AvgPool1d, Conv2d | |
from torch.nn.utils import weight_norm, spectral_norm | |
from .utils import get_padding | |
LRELU_SLOPE = 0.1 | |
def stft(x, fft_size, hop_size, win_length, window): | |
"""Perform STFT and convert to magnitude spectrogram. | |
Args: | |
x (Tensor): Input signal tensor (B, T). | |
fft_size (int): FFT size. | |
hop_size (int): Hop size. | |
win_length (int): Window length. | |
window (str): Window function type. | |
Returns: | |
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1). | |
""" | |
x_stft = torch.stft(x, fft_size, hop_size, win_length, window, return_complex=True) | |
real = x_stft[..., 0] | |
imag = x_stft[..., 1] | |
return torch.abs(x_stft).transpose(2, 1) | |
class SpecDiscriminator(nn.Module): | |
"""docstring for Discriminator.""" | |
def __init__( | |
self, | |
fft_size=1024, | |
shift_size=120, | |
win_length=600, | |
window="hann_window", | |
use_spectral_norm=False, | |
): | |
super(SpecDiscriminator, self).__init__() | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.fft_size = fft_size | |
self.shift_size = shift_size | |
self.win_length = win_length | |
self.window = getattr(torch, window)(win_length) | |
self.discriminators = nn.ModuleList( | |
[ | |
norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))), | |
norm_f( | |
nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4)) | |
), | |
norm_f( | |
nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4)) | |
), | |
norm_f( | |
nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1, 2), padding=(1, 4)) | |
), | |
norm_f( | |
nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) | |
), | |
] | |
) | |
self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1)) | |
def forward(self, y): | |
fmap = [] | |
y = y.squeeze(1) | |
y = stft( | |
y, | |
self.fft_size, | |
self.shift_size, | |
self.win_length, | |
self.window.to(y.get_device()), | |
) | |
y = y.unsqueeze(1) | |
for i, d in enumerate(self.discriminators): | |
y = d(y) | |
y = F.leaky_relu(y, LRELU_SLOPE) | |
fmap.append(y) | |
y = self.out(y) | |
fmap.append(y) | |
return torch.flatten(y, 1, -1), fmap | |
class MultiResSpecDiscriminator(torch.nn.Module): | |
def __init__( | |
self, | |
fft_sizes=[1024, 2048, 512], | |
hop_sizes=[120, 240, 50], | |
win_lengths=[600, 1200, 240], | |
window="hann_window", | |
): | |
super(MultiResSpecDiscriminator, self).__init__() | |
self.discriminators = nn.ModuleList( | |
[ | |
SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window), | |
SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window), | |
SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window), | |
] | |
) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorP(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList( | |
[ | |
norm_f( | |
Conv2d( | |
1, | |
32, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
32, | |
128, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
128, | |
512, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
512, | |
1024, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
) | |
), | |
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), | |
] | |
) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self): | |
super(MultiPeriodDiscriminator, self).__init__() | |
self.discriminators = nn.ModuleList( | |
[ | |
DiscriminatorP(2), | |
DiscriminatorP(3), | |
DiscriminatorP(5), | |
DiscriminatorP(7), | |
DiscriminatorP(11), | |
] | |
) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class WavLMDiscriminator(nn.Module): | |
"""docstring for Discriminator.""" | |
def __init__( | |
self, slm_hidden=768, slm_layers=13, initial_channel=64, use_spectral_norm=False | |
): | |
super(WavLMDiscriminator, self).__init__() | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.pre = norm_f( | |
Conv1d(slm_hidden * slm_layers, initial_channel, 1, 1, padding=0) | |
) | |
self.convs = nn.ModuleList( | |
[ | |
norm_f( | |
nn.Conv1d( | |
initial_channel, initial_channel * 2, kernel_size=5, padding=2 | |
) | |
), | |
norm_f( | |
nn.Conv1d( | |
initial_channel * 2, | |
initial_channel * 4, | |
kernel_size=5, | |
padding=2, | |
) | |
), | |
norm_f( | |
nn.Conv1d(initial_channel * 4, initial_channel * 4, 5, 1, padding=2) | |
), | |
] | |
) | |
self.conv_post = norm_f(Conv1d(initial_channel * 4, 1, 3, 1, padding=1)) | |
def forward(self, x): | |
x = self.pre(x) | |
fmap = [] | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
x = torch.flatten(x, 1, -1) | |
return x | |