Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse fileschecking unsloth
    	
        app.py
    CHANGED
    
    | 
         @@ -1,23 +1,50 @@ 
     | 
|
| 1 | 
         
             
            import os
         
     | 
| 2 | 
         
             
            import gradio as gr
         
     | 
| 3 | 
         
            -
            from  
     | 
| 4 | 
         
            -
            from  
     | 
| 5 | 
         
            -
            import  
     | 
| 
         | 
|
| 6 | 
         
             
            # Load your model and tokenizer
         
     | 
| 7 | 
         
             
            model_name = "Renjith95/renj-portfolio-finetuned-model"  # Replace with your model name
         
     | 
| 8 | 
         
            -
            auth_token = os.getenv("HF_TOKEN") 
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 11 | 
         | 
| 12 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 13 | 
         
             
            """
         
     | 
| 14 | 
         
             
            For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
         
     | 
| 15 | 
         
             
            """
         
     | 
| 16 | 
         
            -
             
     | 
| 17 | 
         
            -
             
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
            def respond(message, history, system_message, max_tokens, temperature, top_p):
         
     | 
| 20 | 
         
            -
                messages = [{"role": "system", "content": system_message}]
         
     | 
| 21 | 
         
             
                for user_msg, assistant_msg in history:
         
     | 
| 22 | 
         
             
                    messages.append({"role": "user", "content": user_msg})
         
     | 
| 23 | 
         
             
                    messages.append({"role": "assistant", "content": assistant_msg})
         
     | 
| 
         @@ -32,35 +59,20 @@ def respond(message, history, system_message, max_tokens, temperature, top_p): 
     | 
|
| 32 | 
         | 
| 33 | 
         
             
                outputs = model.generate(
         
     | 
| 34 | 
         
             
                    input_ids=inputs,
         
     | 
| 35 | 
         
            -
                    max_new_tokens= 
     | 
| 36 | 
         
             
                    use_cache=True,
         
     | 
| 37 | 
         
            -
                    temperature= 
     | 
| 38 | 
         
            -
                    top_p= 
     | 
| 39 | 
         
             
                )
         
     | 
| 40 | 
         
            -
             
     | 
| 41 | 
         
            -
                
         
     | 
| 42 | 
         
            -
                 
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
                yield response
         
     | 
| 45 | 
         
            -
            """
         
     | 
| 46 | 
         
            -
            For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
         
     | 
| 47 | 
         
            -
            """
         
     | 
| 48 | 
         
             
            demo = gr.ChatInterface(
         
     | 
| 49 | 
         
             
                respond,
         
     | 
| 50 | 
         
            -
                 
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
                    gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
         
     | 
| 53 | 
         
            -
                    gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
         
     | 
| 54 | 
         
            -
                    gr.Slider(
         
     | 
| 55 | 
         
            -
                        minimum=0.1,
         
     | 
| 56 | 
         
            -
                        maximum=1.0,
         
     | 
| 57 | 
         
            -
                        value=0.95,
         
     | 
| 58 | 
         
            -
                        step=0.05,
         
     | 
| 59 | 
         
            -
                        label="Top-p (nucleus sampling)",
         
     | 
| 60 | 
         
            -
                    ),
         
     | 
| 61 | 
         
            -
                ],
         
     | 
| 62 | 
         
             
            )
         
     | 
| 63 | 
         | 
| 64 | 
         
            -
             
     | 
| 65 | 
         
             
            if __name__ == "__main__":
         
     | 
| 66 | 
         
             
                demo.launch(share = True)
         
     | 
| 
         | 
|
| 1 | 
         
             
            import os
         
     | 
| 2 | 
         
             
            import gradio as gr
         
     | 
| 3 | 
         
            +
            from transformers import TextStreamer
         
     | 
| 4 | 
         
            +
            from peft import PeftModel
         
     | 
| 5 | 
         
            +
            from unsloth import FastLanguageModel
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
             
            # Load your model and tokenizer
         
     | 
| 8 | 
         
             
            model_name = "Renjith95/renj-portfolio-finetuned-model"  # Replace with your model name
         
     | 
| 9 | 
         
            +
            auth_token = os.getenv("HF_TOKEN")   # Now this should work
         
     | 
| 10 | 
         
            +
            # print("Auth token:", auth_token)  # To verify it's loaded
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            # Loading the base model and applying the local adapter.
         
     | 
| 13 | 
         
            +
            max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
         
     | 
| 14 | 
         
            +
            dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
         
     | 
| 15 | 
         
            +
            load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            # 4bit pre quantized models we support for 4x faster downloading + no OOMs.
         
     | 
| 18 | 
         
            +
            fourbit_models = [
         
     | 
| 19 | 
         
            +
                "unsloth/mistral-7b-bnb-4bit",
         
     | 
| 20 | 
         
            +
                "unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
         
     | 
| 21 | 
         
            +
                "unsloth/llama-2-7b-bnb-4bit",
         
     | 
| 22 | 
         
            +
                "unsloth/llama-2-13b-bnb-4bit",
         
     | 
| 23 | 
         
            +
                "unsloth/codellama-34b-bnb-4bit",
         
     | 
| 24 | 
         
            +
                "unsloth/tinyllama-bnb-4bit",
         
     | 
| 25 | 
         
            +
                "unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster!
         
     | 
| 26 | 
         
            +
                "unsloth/gemma-2b-bnb-4bit",
         
     | 
| 27 | 
         
            +
            ] # More models at https://huggingface.co/unsloth
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            model, tokenizer = FastLanguageModel.from_pretrained(
         
     | 
| 30 | 
         
            +
                model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B
         
     | 
| 31 | 
         
            +
                max_seq_length = max_seq_length,
         
     | 
| 32 | 
         
            +
                dtype = dtype,
         
     | 
| 33 | 
         
            +
                load_in_4bit = load_in_4bit,
         
     | 
| 34 | 
         
            +
                token = auth_token, # use one if using gated models like meta-llama/Llama-2-7b-hf
         
     | 
| 35 | 
         
            +
            )
         
     | 
| 36 | 
         
            +
            model = PeftModel.from_pretrained(model, "Renjith95/renj-portfolio-finetuned-adapter", use_auth_token=auth_token)
         
     | 
| 37 | 
         
            +
            FastLanguageModel.for_inference(model)
         
     | 
| 38 | 
         | 
| 39 | 
         | 
| 40 | 
         
            +
            # tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token)
         
     | 
| 41 | 
         
            +
            # model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_auth_token=auth_token)
         
     | 
| 42 | 
         
            +
            text_streamer = TextStreamer(tokenizer, skip_prompt = True)
         
     | 
| 43 | 
         
             
            """
         
     | 
| 44 | 
         
             
            For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
         
     | 
| 45 | 
         
             
            """
         
     | 
| 46 | 
         
            +
            def respond(message, history):
         
     | 
| 47 | 
         
            +
                messages = []
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 48 | 
         
             
                for user_msg, assistant_msg in history:
         
     | 
| 49 | 
         
             
                    messages.append({"role": "user", "content": user_msg})
         
     | 
| 50 | 
         
             
                    messages.append({"role": "assistant", "content": assistant_msg})
         
     | 
| 
         | 
|
| 59 | 
         | 
| 60 | 
         
             
                outputs = model.generate(
         
     | 
| 61 | 
         
             
                    input_ids=inputs,
         
     | 
| 62 | 
         
            +
                    max_new_tokens=512,
         
     | 
| 63 | 
         
             
                    use_cache=True,
         
     | 
| 64 | 
         
            +
                    temperature=0.7,
         
     | 
| 65 | 
         
            +
                    top_p=0.95,
         
     | 
| 66 | 
         
             
                )
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                response = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
         
     | 
| 69 | 
         
            +
                return response
         
     | 
| 70 | 
         
            +
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 71 | 
         
             
            demo = gr.ChatInterface(
         
     | 
| 72 | 
         
             
                respond,
         
     | 
| 73 | 
         
            +
                title="Renj Chatbot",
         
     | 
| 74 | 
         
            +
                description="Ask me anything about my portfolio and projects."
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 75 | 
         
             
            )
         
     | 
| 76 | 
         | 
| 
         | 
|
| 77 | 
         
             
            if __name__ == "__main__":
         
     | 
| 78 | 
         
             
                demo.launch(share = True)
         
     |