Cardano_7B / app.py
Remostart's picture
Update app.py
2984b8e verified
raw
history blame
3.67 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from spaces import GPU
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables for model and tokenizer (lazy loading)
model = None
tokenizer = None
MODEL_NAME = "ubiodee/Test_Plutus"
FALLBACK_TOKENIZER = "gpt2"
# Load tokenizer at startup (lightweight, no model yet)
try:
logger.info("Loading tokenizer at startup with legacy versions...")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
use_fast=False,
trust_remote_code=True,
)
logger.info("Primary tokenizer loaded successfully.")
except Exception as e:
logger.warning(f"Primary tokenizer failed: {str(e)}. Using fallback.")
tokenizer = AutoTokenizer.from_pretrained(
FALLBACK_TOKENIZER,
use_fast=False,
trust_remote_code=True,
)
logger.info("Fallback tokenizer loaded.")
# Set pad token
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
logger.info("Set pad_token_id to eos_token_id.")
def load_model():
"""Load model inside GPU context to enable quantization."""
global model
if model is None:
try:
logger.info("Loading model with CPU fallback (full precision)...")
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16, # Use fp16 for memory efficiency without bitsandbytes
low_cpu_mem_usage=True,
trust_remote_code=True,
)
model.eval()
if torch.cuda.is_available():
model.to("cuda")
logger.info("Model loaded and moved to GPU.")
else:
logger.warning("GPU not available; using CPU.")
except Exception as e:
logger.error(f"Model loading failed: {str(e)}")
raise
return model
# Response function: Load model on first call, then reuse
@spaces.GPU(duration=300) # Allow up to 5min for loading + inference
def generate_response(prompt, progress=gr.Progress()):
global model
progress(0.1, desc="Loading model if needed...")
model = load_model() # Ensures model is loaded in GPU context
progress(0.3, desc="Tokenizing input...")
try:
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
progress(0.6, desc="Generating response...")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove prompt from output
if response.startswith(prompt):
response = response[len(prompt):].strip()
progress(1.0, desc="Done!")
return response
except Exception as e:
logger.error(f"Inference failed: {str(e)}")
return f"Error during generation: {str(e)}"
# Gradio UI
demo = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus..."),
outputs=gr.Textbox(label="Model Response"),
title="Cardano Plutus AI Assistant",
description="Write Plutus smart contracts on Cardano blockchain."
)
# Launch with queueing
demo.queue(max_size=5).launch(enable_queue=True, max_threads=1)