Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from spaces import GPU | |
| import logging | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # Global variables for model and tokenizer (lazy loading) | |
| model = None | |
| tokenizer = None | |
| MODEL_NAME = "ubiodee/Test_Plutus" | |
| FALLBACK_TOKENIZER = "gpt2" | |
| # Load tokenizer at startup (lightweight, no model yet) | |
| try: | |
| logger.info("Loading tokenizer at startup with legacy versions...") | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| MODEL_NAME, | |
| use_fast=False, | |
| trust_remote_code=True, | |
| ) | |
| logger.info("Primary tokenizer loaded successfully.") | |
| except Exception as e: | |
| logger.warning(f"Primary tokenizer failed: {str(e)}. Using fallback.") | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| FALLBACK_TOKENIZER, | |
| use_fast=False, | |
| trust_remote_code=True, | |
| ) | |
| logger.info("Fallback tokenizer loaded.") | |
| # Set pad token | |
| if tokenizer.pad_token_id is None: | |
| tokenizer.pad_token_id = tokenizer.eos_token_id | |
| logger.info("Set pad_token_id to eos_token_id.") | |
| def load_model(): | |
| """Load model inside GPU context to enable quantization.""" | |
| global model | |
| if model is None: | |
| try: | |
| logger.info("Loading model with CPU fallback (full precision)...") | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| torch_dtype=torch.float16, # Use fp16 for memory efficiency without bitsandbytes | |
| low_cpu_mem_usage=True, | |
| trust_remote_code=True, | |
| ) | |
| model.eval() | |
| if torch.cuda.is_available(): | |
| model.to("cuda") | |
| logger.info("Model loaded and moved to GPU.") | |
| else: | |
| logger.warning("GPU not available; using CPU.") | |
| except Exception as e: | |
| logger.error(f"Model loading failed: {str(e)}") | |
| raise | |
| return model | |
| # Response function: Load model on first call, then reuse | |
| # Allow up to 5min for loading + inference | |
| def generate_response(prompt, progress=gr.Progress()): | |
| global model | |
| progress(0.1, desc="Loading model if needed...") | |
| model = load_model() # Ensures model is loaded in GPU context | |
| progress(0.3, desc="Tokenizing input...") | |
| try: | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| progress(0.6, desc="Generating response...") | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=200, | |
| temperature=0.7, | |
| top_p=0.9, | |
| do_sample=True, | |
| eos_token_id=tokenizer.eos_token_id, | |
| pad_token_id=tokenizer.pad_token_id, | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Remove prompt from output | |
| if response.startswith(prompt): | |
| response = response[len(prompt):].strip() | |
| progress(1.0, desc="Done!") | |
| return response | |
| except Exception as e: | |
| logger.error(f"Inference failed: {str(e)}") | |
| return f"Error during generation: {str(e)}" | |
| # Gradio UI | |
| demo = gr.Interface( | |
| fn=generate_response, | |
| inputs=gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus..."), | |
| outputs=gr.Textbox(label="Model Response"), | |
| title="Cardano Plutus AI Assistant", | |
| description="Write Plutus smart contracts on Cardano blockchain." | |
| ) | |
| # Launch with queueing | |
| demo.queue(max_size=5).launch(enable_queue=True, max_threads=1) |