Update app.py
Browse files
app.py
CHANGED
|
@@ -2,10 +2,15 @@ import gradio as gr
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
|
| 5 |
-
# Load the fine-tuned Llama-3-8B model and tokenizer
|
| 6 |
-
model_name = "ubiodee/
|
| 7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Set padding token if not already set
|
| 11 |
if tokenizer.pad_token is None:
|
|
@@ -23,25 +28,28 @@ def generate_text(prompt, max_length=200, temperature=0.7, top_p=0.9):
|
|
| 23 |
temperature=temperature,
|
| 24 |
top_p=top_p,
|
| 25 |
do_sample=True,
|
| 26 |
-
num_return_sequences=1
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
# Decode the generated text
|
| 30 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
| 31 |
return generated_text
|
| 32 |
|
| 33 |
# Create Gradio interface
|
| 34 |
demo = gr.Interface(
|
| 35 |
fn=generate_text,
|
| 36 |
inputs=[
|
| 37 |
-
gr.Textbox(label="Input Prompt", placeholder="Enter your prompt here..."),
|
| 38 |
gr.Slider(label="Max Length", minimum=50, maximum=500, value=200, step=10),
|
| 39 |
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7, step=0.1),
|
| 40 |
gr.Slider(label="Top P", minimum=0.1, maximum=1.0, value=0.9, step=0.05)
|
| 41 |
],
|
| 42 |
-
outputs=gr.Textbox(label="Generated Text"),
|
| 43 |
-
title="
|
| 44 |
-
description="Interact with the fine-tuned Llama-3-8B model
|
| 45 |
)
|
| 46 |
|
| 47 |
if __name__ == "__main__":
|
|
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
# Load the fine-tuned Llama-3-8B model and tokenizer for ubiodee/plutus_llm
|
| 6 |
+
model_name = "ubiodee/plutus_llm"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) # Safeguard against fast tokenizer issues
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 9 |
+
model_name,
|
| 10 |
+
torch_dtype=torch.float16,
|
| 11 |
+
device_map="auto",
|
| 12 |
+
load_in_8bit=True # Enable 8-bit quantization as per model specs
|
| 13 |
+
)
|
| 14 |
|
| 15 |
# Set padding token if not already set
|
| 16 |
if tokenizer.pad_token is None:
|
|
|
|
| 28 |
temperature=temperature,
|
| 29 |
top_p=top_p,
|
| 30 |
do_sample=True,
|
| 31 |
+
num_return_sequences=1,
|
| 32 |
+
pad_token_id=tokenizer.eos_token_id
|
| 33 |
)
|
| 34 |
|
| 35 |
# Decode the generated text
|
| 36 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 37 |
+
# Remove the input prompt from the output for cleaner response
|
| 38 |
+
generated_text = generated_text[len(prompt):].strip()
|
| 39 |
return generated_text
|
| 40 |
|
| 41 |
# Create Gradio interface
|
| 42 |
demo = gr.Interface(
|
| 43 |
fn=generate_text,
|
| 44 |
inputs=[
|
| 45 |
+
gr.Textbox(label="Input Prompt", placeholder="Enter your prompt here...", lines=3),
|
| 46 |
gr.Slider(label="Max Length", minimum=50, maximum=500, value=200, step=10),
|
| 47 |
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7, step=0.1),
|
| 48 |
gr.Slider(label="Top P", minimum=0.1, maximum=1.0, value=0.9, step=0.05)
|
| 49 |
],
|
| 50 |
+
outputs=gr.Textbox(label="Generated Text", lines=10),
|
| 51 |
+
title="Plutus LLM Demo (ubiodee/plutus_llm)",
|
| 52 |
+
description="Interact with the fine-tuned Llama-3-8B model using LoRA and 8-bit quantization. This is based on ubiodee/plutus_llm."
|
| 53 |
)
|
| 54 |
|
| 55 |
if __name__ == "__main__":
|