Spaces:
Sleeping
Sleeping
Update
Browse files- .pre-commit-config.yaml +59 -35
- .style.yapf +0 -5
- .vscode/settings.json +23 -11
- README.md +1 -1
- app.py +31 -44
- requirements.txt +1 -2
- style.css +8 -0
.pre-commit-config.yaml
CHANGED
@@ -1,36 +1,60 @@
|
|
1 |
repos:
|
2 |
-
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
- repo: https://github.com/pre-commit/mirrors-mypy
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
repos:
|
2 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v4.5.0
|
4 |
+
hooks:
|
5 |
+
- id: check-executables-have-shebangs
|
6 |
+
- id: check-json
|
7 |
+
- id: check-merge-conflict
|
8 |
+
- id: check-shebang-scripts-are-executable
|
9 |
+
- id: check-toml
|
10 |
+
- id: check-yaml
|
11 |
+
- id: end-of-file-fixer
|
12 |
+
- id: mixed-line-ending
|
13 |
+
args: ["--fix=lf"]
|
14 |
+
- id: requirements-txt-fixer
|
15 |
+
- id: trailing-whitespace
|
16 |
+
- repo: https://github.com/myint/docformatter
|
17 |
+
rev: v1.7.5
|
18 |
+
hooks:
|
19 |
+
- id: docformatter
|
20 |
+
args: ["--in-place"]
|
21 |
+
- repo: https://github.com/pycqa/isort
|
22 |
+
rev: 5.13.2
|
23 |
+
hooks:
|
24 |
+
- id: isort
|
25 |
+
args: ["--profile", "black"]
|
26 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
27 |
+
rev: v1.8.0
|
28 |
+
hooks:
|
29 |
+
- id: mypy
|
30 |
+
args: ["--ignore-missing-imports"]
|
31 |
+
additional_dependencies:
|
32 |
+
[
|
33 |
+
"types-python-slugify",
|
34 |
+
"types-requests",
|
35 |
+
"types-PyYAML",
|
36 |
+
"types-pytz",
|
37 |
+
]
|
38 |
+
- repo: https://github.com/psf/black
|
39 |
+
rev: 24.2.0
|
40 |
+
hooks:
|
41 |
+
- id: black
|
42 |
+
language_version: python3.10
|
43 |
+
args: ["--line-length", "119"]
|
44 |
+
- repo: https://github.com/kynan/nbstripout
|
45 |
+
rev: 0.7.1
|
46 |
+
hooks:
|
47 |
+
- id: nbstripout
|
48 |
+
args:
|
49 |
+
[
|
50 |
+
"--extra-keys",
|
51 |
+
"metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
|
52 |
+
]
|
53 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
54 |
+
rev: 1.7.1
|
55 |
+
hooks:
|
56 |
+
- id: nbqa-black
|
57 |
+
- id: nbqa-pyupgrade
|
58 |
+
args: ["--py37-plus"]
|
59 |
+
- id: nbqa-isort
|
60 |
+
args: ["--float-to-top"]
|
.style.yapf
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
[style]
|
2 |
-
based_on_style = pep8
|
3 |
-
blank_line_before_nested_class_or_def = false
|
4 |
-
spaces_before_comment = 2
|
5 |
-
split_before_logical_operator = true
|
|
|
|
|
|
|
|
|
|
|
|
.vscode/settings.json
CHANGED
@@ -1,18 +1,30 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
-
"
|
4 |
-
"python.linting.pylintEnabled": false,
|
5 |
-
"python.linting.lintOnSave": true,
|
6 |
-
"python.formatting.provider": "yapf",
|
7 |
-
"python.formatting.yapfArgs": [
|
8 |
-
"--style={based_on_style: pep8, indent_width: 4, blank_line_before_nested_class_or_def: false, spaces_before_comment: 2, split_before_logical_operator: true}"
|
9 |
-
],
|
10 |
"[python]": {
|
|
|
11 |
"editor.formatOnType": true,
|
12 |
"editor.codeActionsOnSave": {
|
13 |
-
"source.organizeImports":
|
14 |
}
|
15 |
},
|
16 |
-
"
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
}
|
|
|
1 |
{
|
2 |
+
"editor.formatOnSave": true,
|
3 |
+
"files.insertFinalNewline": false,
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"[python]": {
|
5 |
+
"editor.defaultFormatter": "ms-python.black-formatter",
|
6 |
"editor.formatOnType": true,
|
7 |
"editor.codeActionsOnSave": {
|
8 |
+
"source.organizeImports": "explicit"
|
9 |
}
|
10 |
},
|
11 |
+
"[jupyter]": {
|
12 |
+
"files.insertFinalNewline": false
|
13 |
+
},
|
14 |
+
"black-formatter.args": [
|
15 |
+
"--line-length=119"
|
16 |
+
],
|
17 |
+
"isort.args": ["--profile", "black"],
|
18 |
+
"flake8.args": [
|
19 |
+
"--max-line-length=119"
|
20 |
+
],
|
21 |
+
"ruff.lint.args": [
|
22 |
+
"--line-length=119"
|
23 |
+
],
|
24 |
+
"notebook.output.scrolling": true,
|
25 |
+
"notebook.formatOnCellExecution": true,
|
26 |
+
"notebook.formatOnSave.enabled": true,
|
27 |
+
"notebook.codeActionsOnSave": {
|
28 |
+
"source.organizeImports": "explicit"
|
29 |
+
}
|
30 |
}
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🏃
|
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.19.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -13,31 +13,26 @@ import numpy as np
|
|
13 |
import PIL.Image
|
14 |
import tensorflow as tf
|
15 |
|
16 |
-
DESCRIPTION =
|
17 |
|
18 |
|
19 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
20 |
-
image_dir = pathlib.Path(
|
21 |
if not image_dir.exists():
|
22 |
-
path = huggingface_hub.hf_hub_download(
|
23 |
-
'public-data/sample-images-TADNE',
|
24 |
-
'images.tar.gz',
|
25 |
-
repo_type='dataset')
|
26 |
with tarfile.open(path) as f:
|
27 |
f.extractall()
|
28 |
-
return sorted(image_dir.glob(
|
29 |
|
30 |
|
31 |
def load_model() -> tf.keras.Model:
|
32 |
-
path = huggingface_hub.hf_hub_download(
|
33 |
-
'model-resnet_custom_v3.h5')
|
34 |
model = tf.keras.models.load_model(path)
|
35 |
return model
|
36 |
|
37 |
|
38 |
def load_labels() -> list[str]:
|
39 |
-
path = huggingface_hub.hf_hub_download(
|
40 |
-
'tags.txt')
|
41 |
with open(path) as f:
|
42 |
labels = [line.strip() for line in f.readlines()]
|
43 |
return labels
|
@@ -47,18 +42,13 @@ model = load_model()
|
|
47 |
labels = load_labels()
|
48 |
|
49 |
|
50 |
-
def predict(
|
51 |
-
image: PIL.Image.Image, score_threshold: float
|
52 |
-
) -> tuple[dict[str, float], dict[str, float], str]:
|
53 |
_, height, width, _ = model.input_shape
|
54 |
image = np.asarray(image)
|
55 |
-
image = tf.image.resize(image,
|
56 |
-
size=(height, width),
|
57 |
-
method=tf.image.ResizeMethod.AREA,
|
58 |
-
preserve_aspect_ratio=True)
|
59 |
image = image.numpy()
|
60 |
image = dd.image.transform_and_pad_image(image, width, height)
|
61 |
-
image = image / 255.
|
62 |
probs = model.predict(image[None, ...])[0]
|
63 |
probs = probs.astype(float)
|
64 |
|
@@ -72,45 +62,42 @@ def predict(
|
|
72 |
if prob < score_threshold:
|
73 |
break
|
74 |
result_threshold[label] = prob
|
75 |
-
result_text =
|
76 |
return result_threshold, result_all, result_text
|
77 |
|
78 |
|
79 |
image_paths = load_sample_image_paths()
|
80 |
examples = [[path.as_posix(), 0.5] for path in image_paths]
|
81 |
|
82 |
-
with gr.Blocks(css=
|
83 |
gr.Markdown(DESCRIPTION)
|
84 |
with gr.Row():
|
85 |
with gr.Column():
|
86 |
-
image = gr.Image(label=
|
87 |
-
score_threshold = gr.Slider(label=
|
88 |
-
|
89 |
-
maximum=1,
|
90 |
-
step=0.05,
|
91 |
-
value=0.5)
|
92 |
-
run_button = gr.Button('Run')
|
93 |
with gr.Column():
|
94 |
with gr.Tabs():
|
95 |
-
with gr.Tab(label=
|
96 |
-
result = gr.Label(label=
|
97 |
-
with gr.Tab(label=
|
98 |
-
result_json = gr.JSON(label=
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
|
109 |
|
110 |
run_button.click(
|
111 |
fn=predict,
|
112 |
inputs=[image, score_threshold],
|
113 |
outputs=[result, result_json, result_text],
|
114 |
-
api_name=
|
115 |
)
|
116 |
-
|
|
|
|
|
|
13 |
import PIL.Image
|
14 |
import tensorflow as tf
|
15 |
|
16 |
+
DESCRIPTION = "# [KichangKim/DeepDanbooru](https://github.com/KichangKim/DeepDanbooru)"
|
17 |
|
18 |
|
19 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
20 |
+
image_dir = pathlib.Path("images")
|
21 |
if not image_dir.exists():
|
22 |
+
path = huggingface_hub.hf_hub_download("public-data/sample-images-TADNE", "images.tar.gz", repo_type="dataset")
|
|
|
|
|
|
|
23 |
with tarfile.open(path) as f:
|
24 |
f.extractall()
|
25 |
+
return sorted(image_dir.glob("*"))
|
26 |
|
27 |
|
28 |
def load_model() -> tf.keras.Model:
|
29 |
+
path = huggingface_hub.hf_hub_download("public-data/DeepDanbooru", "model-resnet_custom_v3.h5")
|
|
|
30 |
model = tf.keras.models.load_model(path)
|
31 |
return model
|
32 |
|
33 |
|
34 |
def load_labels() -> list[str]:
|
35 |
+
path = huggingface_hub.hf_hub_download("public-data/DeepDanbooru", "tags.txt")
|
|
|
36 |
with open(path) as f:
|
37 |
labels = [line.strip() for line in f.readlines()]
|
38 |
return labels
|
|
|
42 |
labels = load_labels()
|
43 |
|
44 |
|
45 |
+
def predict(image: PIL.Image.Image, score_threshold: float) -> tuple[dict[str, float], dict[str, float], str]:
|
|
|
|
|
46 |
_, height, width, _ = model.input_shape
|
47 |
image = np.asarray(image)
|
48 |
+
image = tf.image.resize(image, size=(height, width), method=tf.image.ResizeMethod.AREA, preserve_aspect_ratio=True)
|
|
|
|
|
|
|
49 |
image = image.numpy()
|
50 |
image = dd.image.transform_and_pad_image(image, width, height)
|
51 |
+
image = image / 255.0
|
52 |
probs = model.predict(image[None, ...])[0]
|
53 |
probs = probs.astype(float)
|
54 |
|
|
|
62 |
if prob < score_threshold:
|
63 |
break
|
64 |
result_threshold[label] = prob
|
65 |
+
result_text = ", ".join(result_all.keys())
|
66 |
return result_threshold, result_all, result_text
|
67 |
|
68 |
|
69 |
image_paths = load_sample_image_paths()
|
70 |
examples = [[path.as_posix(), 0.5] for path in image_paths]
|
71 |
|
72 |
+
with gr.Blocks(css="style.css") as demo:
|
73 |
gr.Markdown(DESCRIPTION)
|
74 |
with gr.Row():
|
75 |
with gr.Column():
|
76 |
+
image = gr.Image(label="Input", type="pil")
|
77 |
+
score_threshold = gr.Slider(label="Score threshold", minimum=0, maximum=1, step=0.05, value=0.5)
|
78 |
+
run_button = gr.Button("Run")
|
|
|
|
|
|
|
|
|
79 |
with gr.Column():
|
80 |
with gr.Tabs():
|
81 |
+
with gr.Tab(label="Output"):
|
82 |
+
result = gr.Label(label="Output", show_label=False)
|
83 |
+
with gr.Tab(label="JSON"):
|
84 |
+
result_json = gr.JSON(label="JSON output", show_label=False)
|
85 |
+
with gr.Tab(label="Text"):
|
86 |
+
result_text = gr.Text(label="Text output", show_label=False, lines=5)
|
87 |
+
gr.Examples(
|
88 |
+
examples=examples,
|
89 |
+
inputs=[image, score_threshold],
|
90 |
+
outputs=[result, result_json, result_text],
|
91 |
+
fn=predict,
|
92 |
+
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
|
93 |
+
)
|
|
|
94 |
|
95 |
run_button.click(
|
96 |
fn=predict,
|
97 |
inputs=[image, score_threshold],
|
98 |
outputs=[result, result_json, result_text],
|
99 |
+
api_name="predict",
|
100 |
)
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
demo.queue(max_size=20).launch()
|
requirements.txt
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
git+https://github.com/KichangKim/DeepDanbooru@v3-20200915-sgd-e30#egg=deepdanbooru
|
2 |
-
pillow==10.
|
3 |
-
pydantic==1.10.11
|
4 |
tensorflow==2.13.0
|
|
|
1 |
git+https://github.com/KichangKim/DeepDanbooru@v3-20200915-sgd-e30#egg=deepdanbooru
|
2 |
+
pillow==10.2.0
|
|
|
3 |
tensorflow==2.13.0
|
style.css
CHANGED
@@ -1,3 +1,11 @@
|
|
1 |
h1 {
|
2 |
text-align: center;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
}
|
|
|
1 |
h1 {
|
2 |
text-align: center;
|
3 |
+
display: block;
|
4 |
+
}
|
5 |
+
|
6 |
+
#duplicate-button {
|
7 |
+
margin: auto;
|
8 |
+
color: #fff;
|
9 |
+
background: #1565c0;
|
10 |
+
border-radius: 100vh;
|
11 |
}
|