Spaces:
Runtime error
Runtime error
| from ultralytics.utils.plotting import Annotator | |
| from PIL import Image | |
| from ultralytics import YOLO | |
| import gradio as gr | |
| model=YOLO('Organ_detection.pt') | |
| def Predict(img): | |
| objects_name = [] | |
| cropped_images = [] | |
| # Object detection | |
| results = model.predict(img, conf=0.40, iou=0.45,imgsz=640) | |
| for r in results: | |
| annotator = Annotator(img) | |
| boxes = r.boxes | |
| for box in boxes: | |
| b = box.xyxy[0] # get box coordinates in (left, top, right, bottom) format | |
| c = box.cls | |
| annotator.box_label(b, model.names[int(c)], color=(255, 255, 0), txt_color=(255, 0, 255)) | |
| print(model.names[int(c)]) | |
| # Append the class name to the list | |
| objects_name.append(model.names[int(c)]) | |
| # Crop the image using the bounding box coordinates | |
| left, top, right, bottom = int(b[0]), int(b[1]), int(b[2]), int(b[3]) | |
| cropped_img = img[top:bottom, left:right] | |
| # Store the cropped image | |
| cropped_img_pil = Image.fromarray(cropped_img) | |
| result_img = annotator.result() | |
| return result_img, objects_name, cropped_img_pil | |
| interface=gr.Interface(fn=Predict,inputs=["image"], | |
| outputs=["image","text","image"]) | |
| interface.launch(debug=True) | |