Spaces:
Sleeping
Sleeping
import torch | |
from transformers import T5ForConditionalGeneration,T5Tokenizer | |
def greedy_decoding (inp_ids,attn_mask,model,tokenizer): | |
greedy_output = model.generate(input_ids=inp_ids, attention_mask=attn_mask, max_length=256) | |
Question = tokenizer.decode(greedy_output[0], skip_special_tokens=True,clean_up_tokenization_spaces=True) | |
return Question.strip().capitalize() | |
def beam_search_decoding (inp_ids,attn_mask,model,tokenizer): | |
beam_output = model.generate(input_ids=inp_ids, | |
attention_mask=attn_mask, | |
max_length=256, | |
num_beams=10, | |
num_return_sequences=3, | |
no_repeat_ngram_size=2, | |
early_stopping=True | |
) | |
Questions = [tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True) for out in | |
beam_output] | |
return [Question.strip().capitalize() for Question in Questions] | |
def topkp_decoding (inp_ids,attn_mask,model,tokenizer): | |
topkp_output = model.generate(input_ids=inp_ids, | |
attention_mask=attn_mask, | |
max_length=256, | |
do_sample=True, | |
top_k=40, | |
top_p=0.80, | |
num_return_sequences=3, | |
no_repeat_ngram_size=2, | |
early_stopping=True | |
) | |
Questions = [tokenizer.decode(out, skip_special_tokens=True,clean_up_tokenization_spaces=True) for out in topkp_output] | |
return [Question.strip().capitalize() for Question in Questions] |