AIQuizGenerator / main.py
Rehman1603's picture
Update main.py
1241972 verified
raw
history blame
5.86 kB
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import time
import torch
from transformers import T5ForConditionalGeneration,T5Tokenizer
import random
import spacy
import zipfile
import os
import git
import json
from sense2vec import Sense2Vec
import requests
from collections import OrderedDict
import string
import pke
import nltk
import numpy
import en_core_web_sm
from nltk import FreqDist
nltk.download('brown', quiet=True, force=True)
nltk.download('stopwords', quiet=True, force=True)
nltk.download('popular', quiet=True, force=True)
from nltk.corpus import stopwords
from nltk.corpus import brown
from similarity.normalized_levenshtein import NormalizedLevenshtein
from nltk.tokenize import sent_tokenize
from flashtext import KeywordProcessor
from encoding import beam_search_decoding
from mcq import tokenize_sentences
from mcq import get_keywords
from mcq import get_sentences_for_keyword
from mcq import generate_questions_mcq
from mcq import generate_normal_questions
import time
tokenizer = T5Tokenizer.from_pretrained('t5-large')
model = T5ForConditionalGeneration.from_pretrained('Parth/result')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# model.eval()
device = device
model = model
nlp = spacy.load('en_core_web_sm')
s2v = Sense2Vec().from_disk('s2v_old')
fdist = FreqDist(brown.words())
normalized_levenshtein = NormalizedLevenshtein()
def set_seed(seed):
numpy.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
set_seed(42)
def predict_mcq(payload):
start = time.time()
inp = {
"input_text": payload.get("input_text"),
"max_questions": payload.get("max_questions", 4)
}
text = inp['input_text']
sentences = tokenize_sentences(text)
joiner = " "
modified_text = joiner.join(sentences)
keywords = get_keywords(nlp,modified_text,inp['max_questions'],s2v,fdist,normalized_levenshtein,len(sentences) )
keyword_sentence_mapping = get_sentences_for_keyword(keywords, sentences)
for k in keyword_sentence_mapping.keys():
text_snippet = " ".join(keyword_sentence_mapping[k][:3])
keyword_sentence_mapping[k] = text_snippet
final_output = {}
if len(keyword_sentence_mapping.keys()) == 0:
return final_output
else:
try:
generated_questions = generate_questions_mcq(keyword_sentence_mapping,device,tokenizer,model,s2v,normalized_levenshtein)
except:
return final_output
end = time.time()
final_output["statement"] = modified_text
final_output["questions"] = generated_questions["questions"]
final_output["time_taken"] = end-start
if torch.device=='cuda':
torch.cuda.empty_cache()
return final_output
def predict_shortq(payload):
inp = {
"input_text": payload.get("input_text"),
"max_questions": payload.get("max_questions", 4)
}
text = inp['input_text']
sentences = tokenize_sentences(text)
joiner = " "
modified_text = joiner.join(sentences)
keywords = get_keywords(nlp,modified_text,inp['max_questions'],s2v,fdist,normalized_levenshtein,len(sentences) )
keyword_sentence_mapping = get_sentences_for_keyword(keywords, sentences)
for k in keyword_sentence_mapping.keys():
text_snippet = " ".join(keyword_sentence_mapping[k][:3])
keyword_sentence_mapping[k] = text_snippet
final_output = {}
if len(keyword_sentence_mapping.keys()) == 0:
print('ZERO')
return final_output
else:
generated_questions = generate_normal_questions(keyword_sentence_mapping,device,tokenizer,model)
print(generated_questions)
final_output["statement"] = modified_text
final_output["questions"] = generated_questions["questions"]
if torch.device=='cuda':
torch.cuda.empty_cache()
return final_output
def paraphrase(payload):
start = time.time()
inp = {
"input_text": payload.get("input_text"),
"max_questions": payload.get("max_questions", 3)
}
text = inp['input_text']
num = inp['max_questions']
sentence= text
text= "paraphrase: " + sentence + " </s>"
encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
beam_outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_masks,
max_length= 50,
num_beams=50,
num_return_sequences=num,
no_repeat_ngram_size=2,
early_stopping=True
)
# print ("\nOriginal Question ::")
# print (text)
# print ("\n")
# print ("Paraphrased Questions :: ")
final_outputs =[]
for beam_output in beam_outputs:
sent = tokenizer.decode(beam_output, skip_special_tokens=True,clean_up_tokenization_spaces=True)
if sent.lower() != sentence.lower() and sent not in final_outputs:
final_outputs.append(sent)
output= {}
output['Question']= text
output['Count']= num
output['Paraphrased Questions']= final_outputs
for i, final_output in enumerate(final_outputs):
print("{}".format(i, final_output))
if torch.device=='cuda':
torch.cuda.empty_cache()
return output