ohayo_face_style / models /ui_model.py
Reeve's picture
pix2pixHD
7abd9ae
import torch
from torch.autograd import Variable
from collections import OrderedDict
import numpy as np
import os
from PIL import Image
import util.util as util
from .base_model import BaseModel
from . import networks
class UIModel(BaseModel):
def name(self):
return 'UIModel'
def initialize(self, opt):
assert(not opt.isTrain)
BaseModel.initialize(self, opt)
self.use_features = opt.instance_feat or opt.label_feat
netG_input_nc = opt.label_nc
if not opt.no_instance:
netG_input_nc += 1
if self.use_features:
netG_input_nc += opt.feat_num
self.netG = networks.define_G(netG_input_nc, opt.output_nc, opt.ngf, opt.netG,
opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers,
opt.n_blocks_local, opt.norm, gpu_ids=self.gpu_ids)
self.load_network(self.netG, 'G', opt.which_epoch)
print('---------- Networks initialized -------------')
def toTensor(self, img, normalize=False):
tensor = torch.from_numpy(np.array(img, np.int32, copy=False))
tensor = tensor.view(1, img.size[1], img.size[0], len(img.mode))
tensor = tensor.transpose(1, 2).transpose(1, 3).contiguous()
if normalize:
return (tensor.float()/255.0 - 0.5) / 0.5
return tensor.float()
def load_image(self, label_path, inst_path, feat_path):
opt = self.opt
# read label map
label_img = Image.open(label_path)
if label_path.find('face') != -1:
label_img = label_img.convert('L')
ow, oh = label_img.size
w = opt.loadSize
h = int(w * oh / ow)
label_img = label_img.resize((w, h), Image.NEAREST)
label_map = self.toTensor(label_img)
# onehot vector input for label map
self.label_map = label_map.cuda()
oneHot_size = (1, opt.label_nc, h, w)
input_label = self.Tensor(torch.Size(oneHot_size)).zero_()
self.input_label = input_label.scatter_(1, label_map.long().cuda(), 1.0)
# read instance map
if not opt.no_instance:
inst_img = Image.open(inst_path)
inst_img = inst_img.resize((w, h), Image.NEAREST)
self.inst_map = self.toTensor(inst_img).cuda()
self.edge_map = self.get_edges(self.inst_map)
self.net_input = Variable(torch.cat((self.input_label, self.edge_map), dim=1), volatile=True)
else:
self.net_input = Variable(self.input_label, volatile=True)
self.features_clustered = np.load(feat_path).item()
self.object_map = self.inst_map if opt.instance_feat else self.label_map
object_np = self.object_map.cpu().numpy().astype(int)
self.feat_map = self.Tensor(1, opt.feat_num, h, w).zero_()
self.cluster_indices = np.zeros(self.opt.label_nc, np.uint8)
for i in np.unique(object_np):
label = i if i < 1000 else i//1000
if label in self.features_clustered:
feat = self.features_clustered[label]
np.random.seed(i+1)
cluster_idx = np.random.randint(0, feat.shape[0])
self.cluster_indices[label] = cluster_idx
idx = (self.object_map == i).nonzero()
self.set_features(idx, feat, cluster_idx)
self.net_input_original = self.net_input.clone()
self.label_map_original = self.label_map.clone()
self.feat_map_original = self.feat_map.clone()
if not opt.no_instance:
self.inst_map_original = self.inst_map.clone()
def reset(self):
self.net_input = self.net_input_prev = self.net_input_original.clone()
self.label_map = self.label_map_prev = self.label_map_original.clone()
self.feat_map = self.feat_map_prev = self.feat_map_original.clone()
if not self.opt.no_instance:
self.inst_map = self.inst_map_prev = self.inst_map_original.clone()
self.object_map = self.inst_map if self.opt.instance_feat else self.label_map
def undo(self):
self.net_input = self.net_input_prev
self.label_map = self.label_map_prev
self.feat_map = self.feat_map_prev
if not self.opt.no_instance:
self.inst_map = self.inst_map_prev
self.object_map = self.inst_map if self.opt.instance_feat else self.label_map
# get boundary map from instance map
def get_edges(self, t):
edge = torch.cuda.ByteTensor(t.size()).zero_()
edge[:,:,:,1:] = edge[:,:,:,1:] | (t[:,:,:,1:] != t[:,:,:,:-1])
edge[:,:,:,:-1] = edge[:,:,:,:-1] | (t[:,:,:,1:] != t[:,:,:,:-1])
edge[:,:,1:,:] = edge[:,:,1:,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
edge[:,:,:-1,:] = edge[:,:,:-1,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
return edge.float()
# change the label at the source position to the label at the target position
def change_labels(self, click_src, click_tgt):
y_src, x_src = click_src[0], click_src[1]
y_tgt, x_tgt = click_tgt[0], click_tgt[1]
label_src = int(self.label_map[0, 0, y_src, x_src])
inst_src = self.inst_map[0, 0, y_src, x_src]
label_tgt = int(self.label_map[0, 0, y_tgt, x_tgt])
inst_tgt = self.inst_map[0, 0, y_tgt, x_tgt]
idx_src = (self.inst_map == inst_src).nonzero()
# need to change 3 things: label map, instance map, and feature map
if idx_src.shape:
# backup current maps
self.backup_current_state()
# change both the label map and the network input
self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
self.net_input[idx_src[:,0], idx_src[:,1] + label_src, idx_src[:,2], idx_src[:,3]] = 0
self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1
# update the instance map (and the network input)
if inst_tgt > 1000:
# if different instances have different ids, give the new object a new id
tgt_indices = (self.inst_map > label_tgt * 1000) & (self.inst_map < (label_tgt+1) * 1000)
inst_tgt = self.inst_map[tgt_indices].max() + 1
self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = inst_tgt
self.net_input[:,-1,:,:] = self.get_edges(self.inst_map)
# also copy the source features to the target position
idx_tgt = (self.inst_map == inst_tgt).nonzero()
if idx_tgt.shape:
self.copy_features(idx_src, idx_tgt[0,:])
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))
# add strokes of target label in the image
def add_strokes(self, click_src, label_tgt, bw, save):
# get the region of the new strokes (bw is the brush width)
size = self.net_input.size()
h, w = size[2], size[3]
idx_src = torch.LongTensor(bw**2, 4).fill_(0)
for i in range(bw):
idx_src[i*bw:(i+1)*bw, 2] = min(h-1, max(0, click_src[0]-bw//2 + i))
for j in range(bw):
idx_src[i*bw+j, 3] = min(w-1, max(0, click_src[1]-bw//2 + j))
idx_src = idx_src.cuda()
# again, need to update 3 things
if idx_src.shape:
# backup current maps
if save:
self.backup_current_state()
# update the label map (and the network input) in the stroke region
self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
for k in range(self.opt.label_nc):
self.net_input[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = 0
self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1
# update the instance map (and the network input)
self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
self.net_input[:,-1,:,:] = self.get_edges(self.inst_map)
# also update the features if available
if self.opt.instance_feat:
feat = self.features_clustered[label_tgt]
#np.random.seed(label_tgt+1)
#cluster_idx = np.random.randint(0, feat.shape[0])
cluster_idx = self.cluster_indices[label_tgt]
self.set_features(idx_src, feat, cluster_idx)
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))
# add an object to the clicked position with selected style
def add_objects(self, click_src, label_tgt, mask, style_id=0):
y, x = click_src[0], click_src[1]
mask = np.transpose(mask, (2, 0, 1))[np.newaxis,...]
idx_src = torch.from_numpy(mask).cuda().nonzero()
idx_src[:,2] += y
idx_src[:,3] += x
# backup current maps
self.backup_current_state()
# update label map
self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
for k in range(self.opt.label_nc):
self.net_input[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = 0
self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1
# update instance map
self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt
self.net_input[:,-1,:,:] = self.get_edges(self.inst_map)
# update feature map
self.set_features(idx_src, self.feat, style_id)
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))
def single_forward(self, net_input, feat_map):
net_input = torch.cat((net_input, feat_map), dim=1)
fake_image = self.netG.forward(net_input)
if fake_image.size()[0] == 1:
return fake_image.data[0]
return fake_image.data
# generate all outputs for different styles
def style_forward(self, click_pt, style_id=-1):
if click_pt is None:
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))
self.crop = None
self.mask = None
else:
instToChange = int(self.object_map[0, 0, click_pt[0], click_pt[1]])
self.instToChange = instToChange
label = instToChange if instToChange < 1000 else instToChange//1000
self.feat = self.features_clustered[label]
self.fake_image = []
self.mask = self.object_map == instToChange
idx = self.mask.nonzero()
self.get_crop_region(idx)
if idx.size():
if style_id == -1:
(min_y, min_x, max_y, max_x) = self.crop
### original
for cluster_idx in range(self.opt.multiple_output):
self.set_features(idx, self.feat, cluster_idx)
fake_image = self.single_forward(self.net_input, self.feat_map)
fake_image = util.tensor2im(fake_image[:,min_y:max_y,min_x:max_x])
self.fake_image.append(fake_image)
"""### To speed up previewing different style results, either crop or downsample the label maps
if instToChange > 1000:
(min_y, min_x, max_y, max_x) = self.crop
### crop
_, _, h, w = self.net_input.size()
offset = 512
y_start, x_start = max(0, min_y-offset), max(0, min_x-offset)
y_end, x_end = min(h, (max_y + offset)), min(w, (max_x + offset))
y_region = slice(y_start, y_start+(y_end-y_start)//16*16)
x_region = slice(x_start, x_start+(x_end-x_start)//16*16)
net_input = self.net_input[:,:,y_region,x_region]
for cluster_idx in range(self.opt.multiple_output):
self.set_features(idx, self.feat, cluster_idx)
fake_image = self.single_forward(net_input, self.feat_map[:,:,y_region,x_region])
fake_image = util.tensor2im(fake_image[:,min_y-y_start:max_y-y_start,min_x-x_start:max_x-x_start])
self.fake_image.append(fake_image)
else:
### downsample
(min_y, min_x, max_y, max_x) = [crop//2 for crop in self.crop]
net_input = self.net_input[:,:,::2,::2]
size = net_input.size()
net_input_batch = net_input.expand(self.opt.multiple_output, size[1], size[2], size[3])
for cluster_idx in range(self.opt.multiple_output):
self.set_features(idx, self.feat, cluster_idx)
feat_map = self.feat_map[:,:,::2,::2]
if cluster_idx == 0:
feat_map_batch = feat_map
else:
feat_map_batch = torch.cat((feat_map_batch, feat_map), dim=0)
fake_image_batch = self.single_forward(net_input_batch, feat_map_batch)
for i in range(self.opt.multiple_output):
self.fake_image.append(util.tensor2im(fake_image_batch[i,:,min_y:max_y,min_x:max_x]))"""
else:
self.set_features(idx, self.feat, style_id)
self.cluster_indices[label] = style_id
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map))
def backup_current_state(self):
self.net_input_prev = self.net_input.clone()
self.label_map_prev = self.label_map.clone()
self.inst_map_prev = self.inst_map.clone()
self.feat_map_prev = self.feat_map.clone()
# crop the ROI and get the mask of the object
def get_crop_region(self, idx):
size = self.net_input.size()
h, w = size[2], size[3]
min_y, min_x = idx[:,2].min(), idx[:,3].min()
max_y, max_x = idx[:,2].max(), idx[:,3].max()
crop_min = 128
if max_y - min_y < crop_min:
min_y = max(0, (max_y + min_y) // 2 - crop_min // 2)
max_y = min(h-1, min_y + crop_min)
if max_x - min_x < crop_min:
min_x = max(0, (max_x + min_x) // 2 - crop_min // 2)
max_x = min(w-1, min_x + crop_min)
self.crop = (min_y, min_x, max_y, max_x)
self.mask = self.mask[:,:, min_y:max_y, min_x:max_x]
# update the feature map once a new object is added or the label is changed
def update_features(self, cluster_idx, mask=None, click_pt=None):
self.feat_map_prev = self.feat_map.clone()
# adding a new object
if mask is not None:
y, x = click_pt[0], click_pt[1]
mask = np.transpose(mask, (2,0,1))[np.newaxis,...]
idx = torch.from_numpy(mask).cuda().nonzero()
idx[:,2] += y
idx[:,3] += x
# changing the label of an existing object
else:
idx = (self.object_map == self.instToChange).nonzero()
# update feature map
self.set_features(idx, self.feat, cluster_idx)
# set the class features to the target feature
def set_features(self, idx, feat, cluster_idx):
for k in range(self.opt.feat_num):
self.feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k]
# copy the features at the target position to the source position
def copy_features(self, idx_src, idx_tgt):
for k in range(self.opt.feat_num):
val = self.feat_map[idx_tgt[0], idx_tgt[1] + k, idx_tgt[2], idx_tgt[3]]
self.feat_map[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = val
def get_current_visuals(self, getLabel=False):
mask = self.mask
if self.mask is not None:
mask = np.transpose(self.mask[0].cpu().float().numpy(), (1,2,0)).astype(np.uint8)
dict_list = [('fake_image', self.fake_image), ('mask', mask)]
if getLabel: # only output label map if needed to save bandwidth
label = util.tensor2label(self.net_input.data[0], self.opt.label_nc)
dict_list += [('label', label)]
return OrderedDict(dict_list)