Spaces:
Runtime error
Runtime error
from options.train_options import TrainOptions | |
from data.data_loader import CreateDataLoader | |
from models.models import create_model | |
import os | |
import util.util as util | |
from torch.autograd import Variable | |
import torch.nn as nn | |
opt = TrainOptions().parse() | |
opt.nThreads = 1 | |
opt.batchSize = 1 | |
opt.serial_batches = True | |
opt.no_flip = True | |
opt.instance_feat = True | |
name = 'features' | |
save_path = os.path.join(opt.checkpoints_dir, opt.name) | |
############ Initialize ######### | |
data_loader = CreateDataLoader(opt) | |
dataset = data_loader.load_data() | |
dataset_size = len(data_loader) | |
model = create_model(opt) | |
util.mkdirs(os.path.join(opt.dataroot, opt.phase + '_feat')) | |
######## Save precomputed feature maps for 1024p training ####### | |
for i, data in enumerate(dataset): | |
print('%d / %d images' % (i+1, dataset_size)) | |
feat_map = model.module.netE.forward(Variable(data['image'].cuda(), volatile=True), data['inst'].cuda()) | |
feat_map = nn.Upsample(scale_factor=2, mode='nearest')(feat_map) | |
image_numpy = util.tensor2im(feat_map.data[0]) | |
save_path = data['path'][0].replace('/train_label/', '/train_feat/') | |
util.save_image(image_numpy, save_path) |