Spaces:
Runtime error
Runtime error
from options.train_options import TrainOptions | |
from data.data_loader import CreateDataLoader | |
from models.models import create_model | |
import numpy as np | |
import os | |
opt = TrainOptions().parse() | |
opt.nThreads = 1 | |
opt.batchSize = 1 | |
opt.serial_batches = True | |
opt.no_flip = True | |
opt.instance_feat = True | |
opt.continue_train = True | |
name = 'features' | |
save_path = os.path.join(opt.checkpoints_dir, opt.name) | |
############ Initialize ######### | |
data_loader = CreateDataLoader(opt) | |
dataset = data_loader.load_data() | |
dataset_size = len(data_loader) | |
model = create_model(opt) | |
########### Encode features ########### | |
reencode = True | |
if reencode: | |
features = {} | |
for label in range(opt.label_nc): | |
features[label] = np.zeros((0, opt.feat_num+1)) | |
for i, data in enumerate(dataset): | |
feat = model.module.encode_features(data['image'], data['inst']) | |
for label in range(opt.label_nc): | |
features[label] = np.append(features[label], feat[label], axis=0) | |
print('%d / %d images' % (i+1, dataset_size)) | |
save_name = os.path.join(save_path, name + '.npy') | |
np.save(save_name, features) | |
############## Clustering ########### | |
n_clusters = opt.n_clusters | |
load_name = os.path.join(save_path, name + '.npy') | |
features = np.load(load_name).item() | |
from sklearn.cluster import KMeans | |
centers = {} | |
for label in range(opt.label_nc): | |
feat = features[label] | |
feat = feat[feat[:,-1] > 0.5, :-1] | |
if feat.shape[0]: | |
n_clusters = min(feat.shape[0], opt.n_clusters) | |
kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(feat) | |
centers[label] = kmeans.cluster_centers_ | |
save_name = os.path.join(save_path, name + '_clustered_%03d.npy' % opt.n_clusters) | |
np.save(save_name, centers) | |
print('saving to %s' % save_name) |