Spaces:
Runtime error
Runtime error
import torch | |
from torch.autograd import Variable | |
from collections import OrderedDict | |
import numpy as np | |
import os | |
from PIL import Image | |
import util.util as util | |
from .base_model import BaseModel | |
from . import networks | |
class UIModel(BaseModel): | |
def name(self): | |
return 'UIModel' | |
def initialize(self, opt): | |
assert(not opt.isTrain) | |
BaseModel.initialize(self, opt) | |
self.use_features = opt.instance_feat or opt.label_feat | |
netG_input_nc = opt.label_nc | |
if not opt.no_instance: | |
netG_input_nc += 1 | |
if self.use_features: | |
netG_input_nc += opt.feat_num | |
self.netG = networks.define_G(netG_input_nc, opt.output_nc, opt.ngf, opt.netG, | |
opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers, | |
opt.n_blocks_local, opt.norm, gpu_ids=self.gpu_ids) | |
self.load_network(self.netG, 'G', opt.which_epoch) | |
print('---------- Networks initialized -------------') | |
def toTensor(self, img, normalize=False): | |
tensor = torch.from_numpy(np.array(img, np.int32, copy=False)) | |
tensor = tensor.view(1, img.size[1], img.size[0], len(img.mode)) | |
tensor = tensor.transpose(1, 2).transpose(1, 3).contiguous() | |
if normalize: | |
return (tensor.float()/255.0 - 0.5) / 0.5 | |
return tensor.float() | |
def load_image(self, label_path, inst_path, feat_path): | |
opt = self.opt | |
# read label map | |
label_img = Image.open(label_path) | |
if label_path.find('face') != -1: | |
label_img = label_img.convert('L') | |
ow, oh = label_img.size | |
w = opt.loadSize | |
h = int(w * oh / ow) | |
label_img = label_img.resize((w, h), Image.NEAREST) | |
label_map = self.toTensor(label_img) | |
# onehot vector input for label map | |
self.label_map = label_map.cuda() | |
oneHot_size = (1, opt.label_nc, h, w) | |
input_label = self.Tensor(torch.Size(oneHot_size)).zero_() | |
self.input_label = input_label.scatter_(1, label_map.long().cuda(), 1.0) | |
# read instance map | |
if not opt.no_instance: | |
inst_img = Image.open(inst_path) | |
inst_img = inst_img.resize((w, h), Image.NEAREST) | |
self.inst_map = self.toTensor(inst_img).cuda() | |
self.edge_map = self.get_edges(self.inst_map) | |
self.net_input = Variable(torch.cat((self.input_label, self.edge_map), dim=1), volatile=True) | |
else: | |
self.net_input = Variable(self.input_label, volatile=True) | |
self.features_clustered = np.load(feat_path).item() | |
self.object_map = self.inst_map if opt.instance_feat else self.label_map | |
object_np = self.object_map.cpu().numpy().astype(int) | |
self.feat_map = self.Tensor(1, opt.feat_num, h, w).zero_() | |
self.cluster_indices = np.zeros(self.opt.label_nc, np.uint8) | |
for i in np.unique(object_np): | |
label = i if i < 1000 else i//1000 | |
if label in self.features_clustered: | |
feat = self.features_clustered[label] | |
np.random.seed(i+1) | |
cluster_idx = np.random.randint(0, feat.shape[0]) | |
self.cluster_indices[label] = cluster_idx | |
idx = (self.object_map == i).nonzero() | |
self.set_features(idx, feat, cluster_idx) | |
self.net_input_original = self.net_input.clone() | |
self.label_map_original = self.label_map.clone() | |
self.feat_map_original = self.feat_map.clone() | |
if not opt.no_instance: | |
self.inst_map_original = self.inst_map.clone() | |
def reset(self): | |
self.net_input = self.net_input_prev = self.net_input_original.clone() | |
self.label_map = self.label_map_prev = self.label_map_original.clone() | |
self.feat_map = self.feat_map_prev = self.feat_map_original.clone() | |
if not self.opt.no_instance: | |
self.inst_map = self.inst_map_prev = self.inst_map_original.clone() | |
self.object_map = self.inst_map if self.opt.instance_feat else self.label_map | |
def undo(self): | |
self.net_input = self.net_input_prev | |
self.label_map = self.label_map_prev | |
self.feat_map = self.feat_map_prev | |
if not self.opt.no_instance: | |
self.inst_map = self.inst_map_prev | |
self.object_map = self.inst_map if self.opt.instance_feat else self.label_map | |
# get boundary map from instance map | |
def get_edges(self, t): | |
edge = torch.cuda.ByteTensor(t.size()).zero_() | |
edge[:,:,:,1:] = edge[:,:,:,1:] | (t[:,:,:,1:] != t[:,:,:,:-1]) | |
edge[:,:,:,:-1] = edge[:,:,:,:-1] | (t[:,:,:,1:] != t[:,:,:,:-1]) | |
edge[:,:,1:,:] = edge[:,:,1:,:] | (t[:,:,1:,:] != t[:,:,:-1,:]) | |
edge[:,:,:-1,:] = edge[:,:,:-1,:] | (t[:,:,1:,:] != t[:,:,:-1,:]) | |
return edge.float() | |
# change the label at the source position to the label at the target position | |
def change_labels(self, click_src, click_tgt): | |
y_src, x_src = click_src[0], click_src[1] | |
y_tgt, x_tgt = click_tgt[0], click_tgt[1] | |
label_src = int(self.label_map[0, 0, y_src, x_src]) | |
inst_src = self.inst_map[0, 0, y_src, x_src] | |
label_tgt = int(self.label_map[0, 0, y_tgt, x_tgt]) | |
inst_tgt = self.inst_map[0, 0, y_tgt, x_tgt] | |
idx_src = (self.inst_map == inst_src).nonzero() | |
# need to change 3 things: label map, instance map, and feature map | |
if idx_src.shape: | |
# backup current maps | |
self.backup_current_state() | |
# change both the label map and the network input | |
self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt | |
self.net_input[idx_src[:,0], idx_src[:,1] + label_src, idx_src[:,2], idx_src[:,3]] = 0 | |
self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1 | |
# update the instance map (and the network input) | |
if inst_tgt > 1000: | |
# if different instances have different ids, give the new object a new id | |
tgt_indices = (self.inst_map > label_tgt * 1000) & (self.inst_map < (label_tgt+1) * 1000) | |
inst_tgt = self.inst_map[tgt_indices].max() + 1 | |
self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = inst_tgt | |
self.net_input[:,-1,:,:] = self.get_edges(self.inst_map) | |
# also copy the source features to the target position | |
idx_tgt = (self.inst_map == inst_tgt).nonzero() | |
if idx_tgt.shape: | |
self.copy_features(idx_src, idx_tgt[0,:]) | |
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) | |
# add strokes of target label in the image | |
def add_strokes(self, click_src, label_tgt, bw, save): | |
# get the region of the new strokes (bw is the brush width) | |
size = self.net_input.size() | |
h, w = size[2], size[3] | |
idx_src = torch.LongTensor(bw**2, 4).fill_(0) | |
for i in range(bw): | |
idx_src[i*bw:(i+1)*bw, 2] = min(h-1, max(0, click_src[0]-bw//2 + i)) | |
for j in range(bw): | |
idx_src[i*bw+j, 3] = min(w-1, max(0, click_src[1]-bw//2 + j)) | |
idx_src = idx_src.cuda() | |
# again, need to update 3 things | |
if idx_src.shape: | |
# backup current maps | |
if save: | |
self.backup_current_state() | |
# update the label map (and the network input) in the stroke region | |
self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt | |
for k in range(self.opt.label_nc): | |
self.net_input[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = 0 | |
self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1 | |
# update the instance map (and the network input) | |
self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt | |
self.net_input[:,-1,:,:] = self.get_edges(self.inst_map) | |
# also update the features if available | |
if self.opt.instance_feat: | |
feat = self.features_clustered[label_tgt] | |
#np.random.seed(label_tgt+1) | |
#cluster_idx = np.random.randint(0, feat.shape[0]) | |
cluster_idx = self.cluster_indices[label_tgt] | |
self.set_features(idx_src, feat, cluster_idx) | |
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) | |
# add an object to the clicked position with selected style | |
def add_objects(self, click_src, label_tgt, mask, style_id=0): | |
y, x = click_src[0], click_src[1] | |
mask = np.transpose(mask, (2, 0, 1))[np.newaxis,...] | |
idx_src = torch.from_numpy(mask).cuda().nonzero() | |
idx_src[:,2] += y | |
idx_src[:,3] += x | |
# backup current maps | |
self.backup_current_state() | |
# update label map | |
self.label_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt | |
for k in range(self.opt.label_nc): | |
self.net_input[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = 0 | |
self.net_input[idx_src[:,0], idx_src[:,1] + label_tgt, idx_src[:,2], idx_src[:,3]] = 1 | |
# update instance map | |
self.inst_map[idx_src[:,0], idx_src[:,1], idx_src[:,2], idx_src[:,3]] = label_tgt | |
self.net_input[:,-1,:,:] = self.get_edges(self.inst_map) | |
# update feature map | |
self.set_features(idx_src, self.feat, style_id) | |
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) | |
def single_forward(self, net_input, feat_map): | |
net_input = torch.cat((net_input, feat_map), dim=1) | |
fake_image = self.netG.forward(net_input) | |
if fake_image.size()[0] == 1: | |
return fake_image.data[0] | |
return fake_image.data | |
# generate all outputs for different styles | |
def style_forward(self, click_pt, style_id=-1): | |
if click_pt is None: | |
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) | |
self.crop = None | |
self.mask = None | |
else: | |
instToChange = int(self.object_map[0, 0, click_pt[0], click_pt[1]]) | |
self.instToChange = instToChange | |
label = instToChange if instToChange < 1000 else instToChange//1000 | |
self.feat = self.features_clustered[label] | |
self.fake_image = [] | |
self.mask = self.object_map == instToChange | |
idx = self.mask.nonzero() | |
self.get_crop_region(idx) | |
if idx.size(): | |
if style_id == -1: | |
(min_y, min_x, max_y, max_x) = self.crop | |
### original | |
for cluster_idx in range(self.opt.multiple_output): | |
self.set_features(idx, self.feat, cluster_idx) | |
fake_image = self.single_forward(self.net_input, self.feat_map) | |
fake_image = util.tensor2im(fake_image[:,min_y:max_y,min_x:max_x]) | |
self.fake_image.append(fake_image) | |
"""### To speed up previewing different style results, either crop or downsample the label maps | |
if instToChange > 1000: | |
(min_y, min_x, max_y, max_x) = self.crop | |
### crop | |
_, _, h, w = self.net_input.size() | |
offset = 512 | |
y_start, x_start = max(0, min_y-offset), max(0, min_x-offset) | |
y_end, x_end = min(h, (max_y + offset)), min(w, (max_x + offset)) | |
y_region = slice(y_start, y_start+(y_end-y_start)//16*16) | |
x_region = slice(x_start, x_start+(x_end-x_start)//16*16) | |
net_input = self.net_input[:,:,y_region,x_region] | |
for cluster_idx in range(self.opt.multiple_output): | |
self.set_features(idx, self.feat, cluster_idx) | |
fake_image = self.single_forward(net_input, self.feat_map[:,:,y_region,x_region]) | |
fake_image = util.tensor2im(fake_image[:,min_y-y_start:max_y-y_start,min_x-x_start:max_x-x_start]) | |
self.fake_image.append(fake_image) | |
else: | |
### downsample | |
(min_y, min_x, max_y, max_x) = [crop//2 for crop in self.crop] | |
net_input = self.net_input[:,:,::2,::2] | |
size = net_input.size() | |
net_input_batch = net_input.expand(self.opt.multiple_output, size[1], size[2], size[3]) | |
for cluster_idx in range(self.opt.multiple_output): | |
self.set_features(idx, self.feat, cluster_idx) | |
feat_map = self.feat_map[:,:,::2,::2] | |
if cluster_idx == 0: | |
feat_map_batch = feat_map | |
else: | |
feat_map_batch = torch.cat((feat_map_batch, feat_map), dim=0) | |
fake_image_batch = self.single_forward(net_input_batch, feat_map_batch) | |
for i in range(self.opt.multiple_output): | |
self.fake_image.append(util.tensor2im(fake_image_batch[i,:,min_y:max_y,min_x:max_x]))""" | |
else: | |
self.set_features(idx, self.feat, style_id) | |
self.cluster_indices[label] = style_id | |
self.fake_image = util.tensor2im(self.single_forward(self.net_input, self.feat_map)) | |
def backup_current_state(self): | |
self.net_input_prev = self.net_input.clone() | |
self.label_map_prev = self.label_map.clone() | |
self.inst_map_prev = self.inst_map.clone() | |
self.feat_map_prev = self.feat_map.clone() | |
# crop the ROI and get the mask of the object | |
def get_crop_region(self, idx): | |
size = self.net_input.size() | |
h, w = size[2], size[3] | |
min_y, min_x = idx[:,2].min(), idx[:,3].min() | |
max_y, max_x = idx[:,2].max(), idx[:,3].max() | |
crop_min = 128 | |
if max_y - min_y < crop_min: | |
min_y = max(0, (max_y + min_y) // 2 - crop_min // 2) | |
max_y = min(h-1, min_y + crop_min) | |
if max_x - min_x < crop_min: | |
min_x = max(0, (max_x + min_x) // 2 - crop_min // 2) | |
max_x = min(w-1, min_x + crop_min) | |
self.crop = (min_y, min_x, max_y, max_x) | |
self.mask = self.mask[:,:, min_y:max_y, min_x:max_x] | |
# update the feature map once a new object is added or the label is changed | |
def update_features(self, cluster_idx, mask=None, click_pt=None): | |
self.feat_map_prev = self.feat_map.clone() | |
# adding a new object | |
if mask is not None: | |
y, x = click_pt[0], click_pt[1] | |
mask = np.transpose(mask, (2,0,1))[np.newaxis,...] | |
idx = torch.from_numpy(mask).cuda().nonzero() | |
idx[:,2] += y | |
idx[:,3] += x | |
# changing the label of an existing object | |
else: | |
idx = (self.object_map == self.instToChange).nonzero() | |
# update feature map | |
self.set_features(idx, self.feat, cluster_idx) | |
# set the class features to the target feature | |
def set_features(self, idx, feat, cluster_idx): | |
for k in range(self.opt.feat_num): | |
self.feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k] | |
# copy the features at the target position to the source position | |
def copy_features(self, idx_src, idx_tgt): | |
for k in range(self.opt.feat_num): | |
val = self.feat_map[idx_tgt[0], idx_tgt[1] + k, idx_tgt[2], idx_tgt[3]] | |
self.feat_map[idx_src[:,0], idx_src[:,1] + k, idx_src[:,2], idx_src[:,3]] = val | |
def get_current_visuals(self, getLabel=False): | |
mask = self.mask | |
if self.mask is not None: | |
mask = np.transpose(self.mask[0].cpu().float().numpy(), (1,2,0)).astype(np.uint8) | |
dict_list = [('fake_image', self.fake_image), ('mask', mask)] | |
if getLabel: # only output label map if needed to save bandwidth | |
label = util.tensor2label(self.net_input.data[0], self.opt.label_nc) | |
dict_list += [('label', label)] | |
return OrderedDict(dict_list) |