Ohayou_Face / datasets /augmentations.py
Reevee's picture
first
f39e999
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
class ToOneHot(object):
""" Convert the input PIL image to a one-hot torch tensor """
def __init__(self, n_classes=None):
self.n_classes = n_classes
def onehot_initialization(self, a):
if self.n_classes is None:
self.n_classes = len(np.unique(a))
out = np.zeros(a.shape + (self.n_classes, ), dtype=int)
out[self.__all_idx(a, axis=2)] = 1
return out
def __all_idx(self, idx, axis):
grid = np.ogrid[tuple(map(slice, idx.shape))]
grid.insert(axis, idx)
return tuple(grid)
def __call__(self, img):
img = np.array(img)
one_hot = self.onehot_initialization(img)
return one_hot
class BilinearResize(object):
def __init__(self, factors=[1, 2, 4, 8, 16, 32]):
self.factors = factors
def __call__(self, image):
factor = np.random.choice(self.factors, size=1)[0]
D = BicubicDownSample(factor=factor, cuda=False)
img_tensor = transforms.ToTensor()(image).unsqueeze(0)
img_tensor_lr = D(img_tensor)[0].clamp(0, 1)
img_low_res = transforms.ToPILImage()(img_tensor_lr)
return img_low_res
class BicubicDownSample(nn.Module):
def bicubic_kernel(self, x, a=-0.50):
"""
This equation is exactly copied from the website below:
https://clouard.users.greyc.fr/Pantheon/experiments/rescaling/index-en.html#bicubic
"""
abs_x = torch.abs(x)
if abs_x <= 1.:
return (a + 2.) * torch.pow(abs_x, 3.) - (a + 3.) * torch.pow(abs_x, 2.) + 1
elif 1. < abs_x < 2.:
return a * torch.pow(abs_x, 3) - 5. * a * torch.pow(abs_x, 2.) + 8. * a * abs_x - 4. * a
else:
return 0.0
def __init__(self, factor=4, cuda=True, padding='reflect'):
super().__init__()
self.factor = factor
size = factor * 4
k = torch.tensor([self.bicubic_kernel((i - torch.floor(torch.tensor(size / 2)) + 0.5) / factor)
for i in range(size)], dtype=torch.float32)
k = k / torch.sum(k)
k1 = torch.reshape(k, shape=(1, 1, size, 1))
self.k1 = torch.cat([k1, k1, k1], dim=0)
k2 = torch.reshape(k, shape=(1, 1, 1, size))
self.k2 = torch.cat([k2, k2, k2], dim=0)
self.cuda = '.cuda' if cuda else ''
self.padding = padding
for param in self.parameters():
param.requires_grad = False
def forward(self, x, nhwc=False, clip_round=False, byte_output=False):
filter_height = self.factor * 4
filter_width = self.factor * 4
stride = self.factor
pad_along_height = max(filter_height - stride, 0)
pad_along_width = max(filter_width - stride, 0)
filters1 = self.k1.type('torch{}.FloatTensor'.format(self.cuda))
filters2 = self.k2.type('torch{}.FloatTensor'.format(self.cuda))
# compute actual padding values for each side
pad_top = pad_along_height // 2
pad_bottom = pad_along_height - pad_top
pad_left = pad_along_width // 2
pad_right = pad_along_width - pad_left
# apply mirror padding
if nhwc:
x = torch.transpose(torch.transpose(x, 2, 3), 1, 2) # NHWC to NCHW
# downscaling performed by 1-d convolution
x = F.pad(x, (0, 0, pad_top, pad_bottom), self.padding)
x = F.conv2d(input=x, weight=filters1, stride=(stride, 1), groups=3)
if clip_round:
x = torch.clamp(torch.round(x), 0.0, 255.)
x = F.pad(x, (pad_left, pad_right, 0, 0), self.padding)
x = F.conv2d(input=x, weight=filters2, stride=(1, stride), groups=3)
if clip_round:
x = torch.clamp(torch.round(x), 0.0, 255.)
if nhwc:
x = torch.transpose(torch.transpose(x, 1, 3), 1, 2)
if byte_output:
return x.type('torch.ByteTensor'.format(self.cuda))
else:
return x