Spaces:
Runtime error
Runtime error
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
import numpy as np | |
import torch | |
from torch_utils import misc | |
from torch_utils import persistence | |
from torch_utils.ops import conv2d_resample | |
from torch_utils.ops import upfirdn2d | |
from torch_utils.ops import bias_act | |
from torch_utils.ops import fma | |
from .networks import FullyConnectedLayer, Conv2dLayer, ToRGBLayer, MappingNetwork | |
from util.utilgan import hw_scales, fix_size, multimask | |
def modulated_conv2d( | |
x, # Input tensor of shape [batch_size, in_channels, in_height, in_width]. | |
weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width]. | |
styles, # Modulation coefficients of shape [batch_size, in_channels]. | |
# !!! custom | |
# latmask, # mask for split-frame latents blending | |
countHW = [1,1], # frame split count by height,width | |
splitfine = 0., # frame split edge fineness (float from 0+) | |
size = None, # custom size | |
scale_type = None, # scaling way: fit, centr, side, pad, padside | |
noise = None, # Optional noise tensor to add to the output activations. | |
up = 1, # Integer upsampling factor. | |
down = 1, # Integer downsampling factor. | |
padding = 0, # Padding with respect to the upsampled image. | |
resample_filter = None, # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter(). | |
demodulate = True, # Apply weight demodulation? | |
flip_weight = True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d). | |
fused_modconv = True, # Perform modulation, convolution, and demodulation as a single fused operation? | |
): | |
batch_size = x.shape[0] | |
out_channels, in_channels, kh, kw = weight.shape | |
misc.assert_shape(weight, [out_channels, in_channels, kh, kw]) # [OIkk] | |
misc.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW] | |
misc.assert_shape(styles, [batch_size, in_channels]) # [NI] | |
# Pre-normalize inputs to avoid FP16 overflow. | |
if x.dtype == torch.float16 and demodulate: | |
weight = weight * (1 / np.sqrt(in_channels * kh * kw) / weight.norm(float('inf'), dim=[1,2,3], keepdim=True)) # max_Ikk | |
styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I | |
# Calculate per-sample weights and demodulation coefficients. | |
w = None | |
dcoefs = None | |
if demodulate or fused_modconv: | |
w = weight.unsqueeze(0) # [NOIkk] | |
w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk] | |
if demodulate: | |
dcoefs = (w.square().sum(dim=[2,3,4]) + 1e-8).rsqrt() # [NO] | |
if demodulate and fused_modconv: | |
w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk] | |
# Execute by scaling the activations before and after the convolution. | |
if not fused_modconv: | |
x = x * styles.to(x.dtype).reshape(batch_size, -1, 1, 1) | |
x = conv2d_resample.conv2d_resample(x=x, w=weight.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, flip_weight=flip_weight) | |
# !!! custom size & multi latent blending | |
if size is not None and up==2: | |
x = fix_size(x, size, scale_type) | |
# x = multimask(x, size, latmask, countHW, splitfine) | |
if demodulate and noise is not None: | |
x = fma.fma(x, dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1), noise.to(x.dtype)) | |
elif demodulate: | |
x = x * dcoefs.to(x.dtype).reshape(batch_size, -1, 1, 1) | |
elif noise is not None: | |
x = x.add_(noise.to(x.dtype)) | |
return x | |
# Execute as one fused op using grouped convolution. | |
with misc.suppress_tracer_warnings(): # this value will be treated as a constant | |
batch_size = int(batch_size) | |
misc.assert_shape(x, [batch_size, in_channels, None, None]) | |
x = x.reshape(1, -1, *x.shape[2:]) | |
w = w.reshape(-1, in_channels, kh, kw) | |
x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=resample_filter, up=up, down=down, padding=padding, groups=batch_size, flip_weight=flip_weight) | |
x = x.reshape(batch_size, -1, *x.shape[2:]) | |
# !!! custom size & multi latent blending | |
if size is not None and up==2: | |
x = fix_size(x, size, scale_type) | |
# x = multimask(x, size, latmask, countHW, splitfine) | |
if noise is not None: | |
x = x.add_(noise) | |
return x | |
#---------------------------------------------------------------------------- | |
class SynthesisLayer(torch.nn.Module): | |
def __init__(self, | |
in_channels, # Number of input channels. | |
out_channels, # Number of output channels. | |
w_dim, # Intermediate latent (W) dimensionality. | |
resolution, # Resolution of this layer. | |
# !!! custom | |
countHW = [1,1], # frame split count by height,width | |
splitfine = 0., # frame split edge fineness (float from 0+) | |
size = None, # custom size | |
scale_type = None, # scaling way: fit, centr, side, pad, padside | |
init_res = [4,4], # Initial (minimal) resolution for progressive training | |
kernel_size = 3, # Convolution kernel size. | |
up = 1, # Integer upsampling factor. | |
use_noise = True, # Enable noise input? | |
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. | |
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. | |
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
channels_last = False, # Use channels_last format for the weights? | |
): | |
super().__init__() | |
self.resolution = resolution | |
self.countHW = countHW # !!! custom | |
self.splitfine = splitfine # !!! custom | |
self.size = size # !!! custom | |
self.scale_type = scale_type # !!! custom | |
self.init_res = init_res # !!! custom | |
self.up = up | |
self.use_noise = use_noise | |
self.activation = activation | |
self.conv_clamp = conv_clamp | |
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) | |
self.padding = kernel_size // 2 | |
self.act_gain = bias_act.activation_funcs[activation].def_gain | |
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1) | |
memory_format = torch.channels_last if channels_last else torch.contiguous_format | |
self.weight = torch.nn.Parameter(torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format)) | |
if use_noise: | |
# !!! custom | |
self.register_buffer('noise_const', torch.randn([resolution * init_res[0]//4, resolution * init_res[1]//4])) | |
# self.register_buffer('noise_const', torch.randn([resolution, resolution])) | |
self.noise_strength = torch.nn.Parameter(torch.zeros([])) | |
self.bias = torch.nn.Parameter(torch.zeros([out_channels])) | |
# !!! custom | |
# def forward(self, x, latmask, w, noise_mode='random', fused_modconv=True, gain=1): | |
def forward(self, x, w, noise_mode='random', fused_modconv=True, gain=1): | |
assert noise_mode in ['random', 'const', 'none'] | |
in_resolution = self.resolution // self.up | |
# misc.assert_shape(x, [None, self.weight.shape[1], in_resolution, in_resolution]) | |
styles = self.affine(w) | |
noise = None | |
if self.use_noise and noise_mode == 'random': | |
# !!! custom | |
sz = self.size if self.up==2 and self.size is not None else x.shape[2:] | |
noise = torch.randn([x.shape[0], 1, *sz], device=x.device) * self.noise_strength | |
# noise = torch.randn([x.shape[0], 1, self.resolution, self.resolution], device=x.device) * self.noise_strength | |
if self.use_noise and noise_mode == 'const': | |
noise = self.noise_const * self.noise_strength | |
# !!! custom noise size | |
noise_size = self.size if self.up==2 and self.size is not None and self.resolution > 4 else x.shape[2:] | |
noise = fix_size(noise.unsqueeze(0).unsqueeze(0), noise_size, scale_type=self.scale_type)[0][0] | |
# print(x.shape, noise.shape, self.size, self.up) | |
flip_weight = (self.up == 1) # slightly faster | |
# x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=noise, up=self.up, | |
# latmask=latmask, countHW=self.countHW, splitfine=self.splitfine, size=self.size, scale_type=self.scale_type, # !!! custom | |
# padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight, fused_modconv=fused_modconv) | |
x = modulated_conv2d(x=x, weight=self.weight, styles=styles, noise=noise, up=self.up, | |
countHW=self.countHW, splitfine=self.splitfine, size=self.size, scale_type=self.scale_type, # !!! custom | |
padding=self.padding, resample_filter=self.resample_filter, flip_weight=flip_weight, fused_modconv=fused_modconv) | |
act_gain = self.act_gain * gain | |
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None | |
x = bias_act.bias_act(x, self.bias.to(x.dtype), act=self.activation, gain=act_gain, clamp=act_clamp) | |
return x | |
#---------------------------------------------------------------------------- | |
class SynthesisBlock(torch.nn.Module): | |
def __init__(self, | |
in_channels, # Number of input channels, 0 = first block. | |
out_channels, # Number of output channels. | |
w_dim, # Intermediate latent (W) dimensionality. | |
resolution, # Resolution of this block. | |
img_channels, # Number of output color channels. | |
is_last, # Is this the last block? | |
# !!! custom | |
size = None, # custom size | |
scale_type = None, # scaling way: fit, centr, side, pad, padside | |
init_res = [4,4], # Initial (minimal) resolution for progressive training | |
architecture = 'skip', # Architecture: 'orig', 'skip', 'resnet'. | |
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. | |
conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. | |
use_fp16 = False, # Use FP16 for this block? | |
fp16_channels_last = False, # Use channels-last memory format with FP16? | |
**layer_kwargs, # Arguments for SynthesisLayer. | |
): | |
assert architecture in ['orig', 'skip', 'resnet'] | |
super().__init__() | |
self.in_channels = in_channels | |
self.w_dim = w_dim | |
self.resolution = resolution | |
self.size = size # !!! custom | |
self.scale_type = scale_type # !!! custom | |
self.init_res = init_res # !!! custom | |
self.img_channels = img_channels | |
self.is_last = is_last | |
self.architecture = architecture | |
self.use_fp16 = use_fp16 | |
self.channels_last = (use_fp16 and fp16_channels_last) | |
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) | |
self.num_conv = 0 | |
self.num_torgb = 0 | |
if in_channels == 0: | |
# !!! custom | |
self.const = torch.nn.Parameter(torch.randn([out_channels, *init_res])) | |
# self.const = torch.nn.Parameter(torch.randn([out_channels, resolution, resolution])) | |
if in_channels != 0: | |
self.conv0 = SynthesisLayer(in_channels, out_channels, w_dim=w_dim, resolution=resolution, up=2, | |
init_res=init_res, scale_type=scale_type, size=size, # !!! custom | |
resample_filter=resample_filter, conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs) | |
self.num_conv += 1 | |
self.conv1 = SynthesisLayer(out_channels, out_channels, w_dim=w_dim, resolution=resolution, | |
init_res=init_res, scale_type=scale_type, size=size, # !!! custom | |
conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs) | |
self.num_conv += 1 | |
if is_last or architecture == 'skip': | |
self.torgb = ToRGBLayer(out_channels, img_channels, w_dim=w_dim, | |
conv_clamp=conv_clamp, channels_last=self.channels_last) | |
self.num_torgb += 1 | |
if in_channels != 0 and architecture == 'resnet': | |
self.skip = Conv2dLayer(in_channels, out_channels, kernel_size=1, bias=False, up=2, | |
resample_filter=resample_filter, channels_last=self.channels_last) | |
# !!! custom | |
# def forward(self, x, img, ws, latmask, dconst, force_fp32=False, fused_modconv=None, **layer_kwargs): | |
def forward(self, x, img, ws, force_fp32=False, fused_modconv=None, **layer_kwargs): | |
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) | |
w_iter = iter(ws.unbind(dim=1)) | |
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 | |
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format | |
if fused_modconv is None: | |
with misc.suppress_tracer_warnings(): # this value will be treated as a constant | |
fused_modconv = (not self.training) and (dtype == torch.float32 or int(x.shape[0]) == 1) | |
# Input. | |
if self.in_channels == 0: | |
x = self.const.to(dtype=dtype, memory_format=memory_format) | |
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) | |
# !!! custom const size | |
if 'side' in self.scale_type and 'symm' in self.scale_type: # looks better | |
const_size = self.init_res if self.size is None else self.size | |
x = fix_size(x, const_size, self.scale_type) | |
# distortion technique from Aydao | |
# x += dconst | |
else: | |
# misc.assert_shape(x, [None, self.in_channels, self.resolution // 2, self.resolution // 2]) | |
x = x.to(dtype=dtype, memory_format=memory_format) | |
# Main layers. | |
if self.in_channels == 0: | |
# !!! custom latmask | |
# x = self.conv1(x, None, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
elif self.architecture == 'resnet': | |
y = self.skip(x, gain=np.sqrt(0.5)) | |
# !!! custom latmask | |
# x = self.conv0(x, latmask, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
# x = self.conv1(x, None, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) | |
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) | |
x = y.add_(x) | |
else: | |
# !!! custom latmask | |
# x = self.conv0(x, latmask, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
# x = self.conv1(x, None, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) | |
# ToRGB. | |
if img is not None: | |
# !!! custom img size | |
# misc.assert_shape(img, [None, self.img_channels, self.resolution // 2, self.resolution // 2]) | |
img = upfirdn2d.upsample2d(img, self.resample_filter) | |
img = fix_size(img, self.size, scale_type=self.scale_type) | |
if self.is_last or self.architecture == 'skip': | |
y = self.torgb(x, next(w_iter), fused_modconv=fused_modconv) | |
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) | |
img = img.add_(y) if img is not None else y | |
assert x.dtype == dtype | |
assert img is None or img.dtype == torch.float32 | |
return x, img | |
#---------------------------------------------------------------------------- | |
class SynthesisNetwork(torch.nn.Module): | |
def __init__(self, | |
w_dim, # Intermediate latent (W) dimensionality. | |
img_resolution, # Output image resolution. | |
img_channels, # Number of color channels. | |
# !!! custom | |
init_res = [4,4], # Initial (minimal) resolution for progressive training | |
size = None, # Output size | |
scale_type = None, # scaling way: fit, centr, side, pad, padside | |
channel_base = 32768, # Overall multiplier for the number of channels. | |
channel_max = 512, # Maximum number of channels in any layer. | |
num_fp16_res = 0, # Use FP16 for the N highest resolutions. | |
verbose = False, # | |
**block_kwargs, # Arguments for SynthesisBlock. | |
): | |
assert img_resolution >= 4 and img_resolution & (img_resolution - 1) == 0 | |
super().__init__() | |
self.w_dim = w_dim | |
self.img_resolution = img_resolution | |
self.res_log2 = int(np.log2(img_resolution)) | |
self.img_channels = img_channels | |
self.fmap_base = channel_base | |
self.block_resolutions = [2 ** i for i in range(2, self.res_log2 + 1)] | |
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions} | |
fp16_resolution = max(2 ** (self.res_log2 + 1 - num_fp16_res), 8) | |
# calculate intermediate layers sizes for arbitrary output resolution | |
custom_res = (img_resolution * init_res[0] // 4, img_resolution * init_res[1] // 4) | |
if size is None: size = custom_res | |
if init_res != [4,4] and verbose: | |
print(' .. init res', init_res, size) | |
keep_first_layers = 2 if scale_type == 'fit' else None | |
hws = hw_scales(size, custom_res, self.res_log2 - 2, keep_first_layers, verbose) | |
if verbose: print(hws, '..', custom_res, self.res_log2-1) | |
self.num_ws = 0 | |
for i, res in enumerate(self.block_resolutions): | |
in_channels = channels_dict[res // 2] if res > 4 else 0 | |
out_channels = channels_dict[res] | |
use_fp16 = (res >= fp16_resolution) | |
is_last = (res == self.img_resolution) | |
block = SynthesisBlock(in_channels, out_channels, w_dim=w_dim, resolution=res, | |
init_res=init_res, scale_type=scale_type, size=hws[i], # !!! custom | |
img_channels=img_channels, is_last=is_last, use_fp16=use_fp16, **block_kwargs) | |
self.num_ws += block.num_conv | |
if is_last: | |
self.num_ws += block.num_torgb | |
setattr(self, f'b{res}', block) | |
# def forward(self, ws, latmask, dconst, **block_kwargs): | |
def forward(self, ws, **block_kwargs): | |
block_ws = [] | |
with torch.autograd.profiler.record_function('split_ws'): | |
misc.assert_shape(ws, [None, self.num_ws, self.w_dim]) | |
ws = ws.to(torch.float32) | |
w_idx = 0 | |
for res in self.block_resolutions: | |
block = getattr(self, f'b{res}') | |
block_ws.append(ws.narrow(1, w_idx, block.num_conv + block.num_torgb)) | |
w_idx += block.num_conv | |
x = img = None | |
for res, cur_ws in zip(self.block_resolutions, block_ws): | |
block = getattr(self, f'b{res}') | |
# !!! custom | |
# x, img = block(x, img, cur_ws, latmask, dconst, **block_kwargs) | |
x, img = block(x, img, cur_ws, **block_kwargs) | |
return img | |
#---------------------------------------------------------------------------- | |
class Generator(torch.nn.Module): | |
def __init__(self, | |
z_dim, # Input latent (Z) dimensionality. | |
c_dim, # Conditioning label (C) dimensionality. | |
w_dim, # Intermediate latent (W) dimensionality. | |
img_resolution, # Output resolution. | |
img_channels, # Number of output color channels. | |
# !!! custom | |
init_res = [4,4], # Initial (minimal) resolution for progressive training | |
mapping_kwargs = {}, # Arguments for MappingNetwork. | |
synthesis_kwargs = {}, # Arguments for SynthesisNetwork. | |
): | |
super().__init__() | |
self.z_dim = z_dim | |
self.c_dim = c_dim | |
self.w_dim = w_dim | |
self.img_resolution = img_resolution | |
self.init_res = init_res # !!! custom | |
self.img_channels = img_channels | |
# !!! custom | |
self.synthesis = SynthesisNetwork(w_dim=w_dim, img_resolution=img_resolution, init_res=init_res, img_channels=img_channels, **synthesis_kwargs) # !!! custom | |
self.num_ws = self.synthesis.num_ws | |
self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs) | |
# !!! custom | |
self.output_shape = [1, img_channels, img_resolution * init_res[0] // 4, img_resolution * init_res[1] // 4] | |
# !!! custom | |
# def forward(self, z, c, latmask, dconst, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs): | |
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs): | |
# def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, **synthesis_kwargs): | |
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff) | |
# img = self.synthesis(ws, latmask, dconst, **synthesis_kwargs) # !!! custom | |
img = self.synthesis(ws, **synthesis_kwargs) # !!! custom | |
return img | |