Spaces:
Runtime error
Runtime error
import os | |
import matplotlib | |
import matplotlib.pyplot as plt | |
matplotlib.use('Agg') | |
import torch | |
from torch import nn | |
from torch.utils.data import DataLoader | |
from torch.utils.tensorboard import SummaryWriter | |
import torch.nn.functional as F | |
from utils import common, train_utils | |
from criteria import id_loss, w_norm, moco_loss | |
from configs import data_configs | |
from datasets.images_dataset import ImagesDataset | |
from criteria.lpips.lpips import LPIPS | |
from models.psp import pSp | |
from training.ranger import Ranger | |
class Coach: | |
def __init__(self, opts): | |
self.opts = opts | |
self.global_step = 0 | |
self.device = 'cuda:0' # TODO: Allow multiple GPU? currently using CUDA_VISIBLE_DEVICES | |
self.opts.device = self.device | |
if self.opts.use_wandb: | |
from utils.wandb_utils import WBLogger | |
self.wb_logger = WBLogger(self.opts) | |
# Initialize network | |
self.net = pSp(self.opts).to(self.device) | |
# Estimate latent_avg via dense sampling if latent_avg is not available | |
if self.net.latent_avg is None: | |
self.net.latent_avg = self.net.decoder.mean_latent(int(1e5))[0].detach() | |
# Initialize loss | |
if self.opts.id_lambda > 0 and self.opts.moco_lambda > 0: | |
raise ValueError('Both ID and MoCo loss have lambdas > 0! Please select only one to have non-zero lambda!') | |
self.mse_loss = nn.MSELoss().to(self.device).eval() | |
if self.opts.lpips_lambda > 0: | |
self.lpips_loss = LPIPS(net_type='alex').to(self.device).eval() | |
if self.opts.id_lambda > 0: | |
self.id_loss = id_loss.IDLoss().to(self.device).eval() | |
if self.opts.w_norm_lambda > 0: | |
self.w_norm_loss = w_norm.WNormLoss(start_from_latent_avg=self.opts.start_from_latent_avg) | |
if self.opts.moco_lambda > 0: | |
self.moco_loss = moco_loss.MocoLoss().to(self.device).eval() | |
# Initialize optimizer | |
self.optimizer = self.configure_optimizers() | |
# Initialize dataset | |
self.train_dataset, self.test_dataset = self.configure_datasets() | |
self.train_dataloader = DataLoader(self.train_dataset, | |
batch_size=self.opts.batch_size, | |
shuffle=True, | |
num_workers=int(self.opts.workers), | |
drop_last=True) | |
self.test_dataloader = DataLoader(self.test_dataset, | |
batch_size=self.opts.test_batch_size, | |
shuffle=False, | |
num_workers=int(self.opts.test_workers), | |
drop_last=True) | |
# Initialize logger | |
log_dir = os.path.join(opts.exp_dir, 'logs') | |
os.makedirs(log_dir, exist_ok=True) | |
self.logger = SummaryWriter(log_dir=log_dir) | |
# Initialize checkpoint dir | |
self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints') | |
os.makedirs(self.checkpoint_dir, exist_ok=True) | |
self.best_val_loss = None | |
if self.opts.save_interval is None: | |
self.opts.save_interval = self.opts.max_steps | |
def train(self): | |
self.net.train() | |
while self.global_step < self.opts.max_steps: | |
for batch_idx, batch in enumerate(self.train_dataloader): | |
self.optimizer.zero_grad() | |
x, y = batch | |
x, y = x.to(self.device).float(), y.to(self.device).float() | |
y_hat, latent = self.net.forward(x, return_latents=True) | |
loss, loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent) | |
loss.backward() | |
self.optimizer.step() | |
# Logging related | |
if self.global_step % self.opts.image_interval == 0 or (self.global_step < 1000 and self.global_step % 25 == 0): | |
self.parse_and_log_images(id_logs, x, y, y_hat, title='images/train/faces') | |
if self.global_step % self.opts.board_interval == 0: | |
self.print_metrics(loss_dict, prefix='train') | |
self.log_metrics(loss_dict, prefix='train') | |
# Log images of first batch to wandb | |
if self.opts.use_wandb and batch_idx == 0: | |
self.wb_logger.log_images_to_wandb(x, y, y_hat, id_logs, prefix="train", step=self.global_step, opts=self.opts) | |
# Validation related | |
val_loss_dict = None | |
if self.global_step % self.opts.val_interval == 0 or self.global_step == self.opts.max_steps: | |
val_loss_dict = self.validate() | |
if val_loss_dict and (self.best_val_loss is None or val_loss_dict['loss'] < self.best_val_loss): | |
self.best_val_loss = val_loss_dict['loss'] | |
self.checkpoint_me(val_loss_dict, is_best=True) | |
if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps: | |
if val_loss_dict is not None: | |
self.checkpoint_me(val_loss_dict, is_best=False) | |
else: | |
self.checkpoint_me(loss_dict, is_best=False) | |
if self.global_step == self.opts.max_steps: | |
print('OMG, finished training!') | |
break | |
self.global_step += 1 | |
def validate(self): | |
self.net.eval() | |
agg_loss_dict = [] | |
for batch_idx, batch in enumerate(self.test_dataloader): | |
x, y = batch | |
with torch.no_grad(): | |
x, y = x.to(self.device).float(), y.to(self.device).float() | |
y_hat, latent = self.net.forward(x, return_latents=True) | |
loss, cur_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent) | |
agg_loss_dict.append(cur_loss_dict) | |
# Logging related | |
self.parse_and_log_images(id_logs, x, y, y_hat, | |
title='images/test/faces', | |
subscript='{:04d}'.format(batch_idx)) | |
# Log images of first batch to wandb | |
if self.opts.use_wandb and batch_idx == 0: | |
self.wb_logger.log_images_to_wandb(x, y, y_hat, id_logs, prefix="test", step=self.global_step, opts=self.opts) | |
# For first step just do sanity test on small amount of data | |
if self.global_step == 0 and batch_idx >= 4: | |
self.net.train() | |
return None # Do not log, inaccurate in first batch | |
loss_dict = train_utils.aggregate_loss_dict(agg_loss_dict) | |
self.log_metrics(loss_dict, prefix='test') | |
self.print_metrics(loss_dict, prefix='test') | |
self.net.train() | |
return loss_dict | |
def checkpoint_me(self, loss_dict, is_best): | |
save_name = 'best_model.pt' if is_best else f'iteration_{self.global_step}.pt' | |
save_dict = self.__get_save_dict() | |
checkpoint_path = os.path.join(self.checkpoint_dir, save_name) | |
torch.save(save_dict, checkpoint_path) | |
with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f: | |
if is_best: | |
f.write(f'**Best**: Step - {self.global_step}, Loss - {self.best_val_loss} \n{loss_dict}\n') | |
if self.opts.use_wandb: | |
self.wb_logger.log_best_model() | |
else: | |
f.write(f'Step - {self.global_step}, \n{loss_dict}\n') | |
def configure_optimizers(self): | |
params = list(self.net.encoder.parameters()) | |
if self.opts.train_decoder: | |
params += list(self.net.decoder.parameters()) | |
if self.opts.optim_name == 'adam': | |
optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate) | |
else: | |
optimizer = Ranger(params, lr=self.opts.learning_rate) | |
return optimizer | |
def configure_datasets(self): | |
if self.opts.dataset_type not in data_configs.DATASETS.keys(): | |
Exception(f'{self.opts.dataset_type} is not a valid dataset_type') | |
print(f'Loading dataset for {self.opts.dataset_type}') | |
dataset_args = data_configs.DATASETS[self.opts.dataset_type] | |
transforms_dict = dataset_args['transforms'](self.opts).get_transforms() | |
train_dataset = ImagesDataset(source_root=dataset_args['train_source_root'], | |
target_root=dataset_args['train_target_root'], | |
source_transform=transforms_dict['transform_source'], | |
target_transform=transforms_dict['transform_gt_train'], | |
opts=self.opts) | |
test_dataset = ImagesDataset(source_root=dataset_args['test_source_root'], | |
target_root=dataset_args['test_target_root'], | |
source_transform=transforms_dict['transform_source'], | |
target_transform=transforms_dict['transform_test'], | |
opts=self.opts) | |
if self.opts.use_wandb: | |
self.wb_logger.log_dataset_wandb(train_dataset, dataset_name="Train") | |
self.wb_logger.log_dataset_wandb(test_dataset, dataset_name="Test") | |
print(f"Number of training samples: {len(train_dataset)}") | |
print(f"Number of test samples: {len(test_dataset)}") | |
return train_dataset, test_dataset | |
def calc_loss(self, x, y, y_hat, latent): | |
loss_dict = {} | |
loss = 0.0 | |
id_logs = None | |
if self.opts.id_lambda > 0: | |
loss_id, sim_improvement, id_logs = self.id_loss(y_hat, y, x) | |
loss_dict['loss_id'] = float(loss_id) | |
loss_dict['id_improve'] = float(sim_improvement) | |
loss = loss_id * self.opts.id_lambda | |
if self.opts.l2_lambda > 0: | |
loss_l2 = F.mse_loss(y_hat, y) | |
loss_dict['loss_l2'] = float(loss_l2) | |
loss += loss_l2 * self.opts.l2_lambda | |
if self.opts.lpips_lambda > 0: | |
loss_lpips = self.lpips_loss(y_hat, y) | |
loss_dict['loss_lpips'] = float(loss_lpips) | |
loss += loss_lpips * self.opts.lpips_lambda | |
if self.opts.lpips_lambda_crop > 0: | |
loss_lpips_crop = self.lpips_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220]) | |
loss_dict['loss_lpips_crop'] = float(loss_lpips_crop) | |
loss += loss_lpips_crop * self.opts.lpips_lambda_crop | |
if self.opts.l2_lambda_crop > 0: | |
loss_l2_crop = F.mse_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220]) | |
loss_dict['loss_l2_crop'] = float(loss_l2_crop) | |
loss += loss_l2_crop * self.opts.l2_lambda_crop | |
if self.opts.w_norm_lambda > 0: | |
loss_w_norm = self.w_norm_loss(latent, self.net.latent_avg) | |
loss_dict['loss_w_norm'] = float(loss_w_norm) | |
loss += loss_w_norm * self.opts.w_norm_lambda | |
if self.opts.moco_lambda > 0: | |
loss_moco, sim_improvement, id_logs = self.moco_loss(y_hat, y, x) | |
loss_dict['loss_moco'] = float(loss_moco) | |
loss_dict['id_improve'] = float(sim_improvement) | |
loss += loss_moco * self.opts.moco_lambda | |
loss_dict['loss'] = float(loss) | |
return loss, loss_dict, id_logs | |
def log_metrics(self, metrics_dict, prefix): | |
for key, value in metrics_dict.items(): | |
self.logger.add_scalar(f'{prefix}/{key}', value, self.global_step) | |
if self.opts.use_wandb: | |
self.wb_logger.log(prefix, metrics_dict, self.global_step) | |
def print_metrics(self, metrics_dict, prefix): | |
print(f'Metrics for {prefix}, step {self.global_step}') | |
for key, value in metrics_dict.items(): | |
print(f'\t{key} = ', value) | |
def parse_and_log_images(self, id_logs, x, y, y_hat, title, subscript=None, display_count=2): | |
im_data = [] | |
for i in range(display_count): | |
cur_im_data = { | |
'input_face': common.log_input_image(x[i], self.opts), | |
'target_face': common.tensor2im(y[i]), | |
'output_face': common.tensor2im(y_hat[i]), | |
} | |
if id_logs is not None: | |
for key in id_logs[i]: | |
cur_im_data[key] = id_logs[i][key] | |
im_data.append(cur_im_data) | |
self.log_images(title, im_data=im_data, subscript=subscript) | |
def log_images(self, name, im_data, subscript=None, log_latest=False): | |
fig = common.vis_faces(im_data) | |
step = self.global_step | |
if log_latest: | |
step = 0 | |
if subscript: | |
path = os.path.join(self.logger.log_dir, name, f'{subscript}_{step:04d}.jpg') | |
else: | |
path = os.path.join(self.logger.log_dir, name, f'{step:04d}.jpg') | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
fig.savefig(path) | |
plt.close(fig) | |
def __get_save_dict(self): | |
save_dict = { | |
'state_dict': self.net.state_dict(), | |
'opts': vars(self.opts) | |
} | |
# save the latent avg in state_dict for inference if truncation of w was used during training | |
if self.opts.start_from_latent_avg: | |
save_dict['latent_avg'] = self.net.latent_avg | |
return save_dict | |