Reevee's picture
first
f39e999
raw
history blame
11.2 kB
import os
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
from utils import common, train_utils
from criteria import id_loss, w_norm, moco_loss
from configs import data_configs
from datasets.images_dataset import ImagesDataset
from criteria.lpips.lpips import LPIPS
from models.psp import pSp
from training.ranger import Ranger
class Coach:
def __init__(self, opts):
self.opts = opts
self.global_step = 0
self.device = 'cuda:0' # TODO: Allow multiple GPU? currently using CUDA_VISIBLE_DEVICES
self.opts.device = self.device
if self.opts.use_wandb:
from utils.wandb_utils import WBLogger
self.wb_logger = WBLogger(self.opts)
# Initialize network
self.net = pSp(self.opts).to(self.device)
# Estimate latent_avg via dense sampling if latent_avg is not available
if self.net.latent_avg is None:
self.net.latent_avg = self.net.decoder.mean_latent(int(1e5))[0].detach()
# Initialize loss
if self.opts.id_lambda > 0 and self.opts.moco_lambda > 0:
raise ValueError('Both ID and MoCo loss have lambdas > 0! Please select only one to have non-zero lambda!')
self.mse_loss = nn.MSELoss().to(self.device).eval()
if self.opts.lpips_lambda > 0:
self.lpips_loss = LPIPS(net_type='alex').to(self.device).eval()
if self.opts.id_lambda > 0:
self.id_loss = id_loss.IDLoss().to(self.device).eval()
if self.opts.w_norm_lambda > 0:
self.w_norm_loss = w_norm.WNormLoss(start_from_latent_avg=self.opts.start_from_latent_avg)
if self.opts.moco_lambda > 0:
self.moco_loss = moco_loss.MocoLoss().to(self.device).eval()
# Initialize optimizer
self.optimizer = self.configure_optimizers()
# Initialize dataset
self.train_dataset, self.test_dataset = self.configure_datasets()
self.train_dataloader = DataLoader(self.train_dataset,
batch_size=self.opts.batch_size,
shuffle=True,
num_workers=int(self.opts.workers),
drop_last=True)
self.test_dataloader = DataLoader(self.test_dataset,
batch_size=self.opts.test_batch_size,
shuffle=False,
num_workers=int(self.opts.test_workers),
drop_last=True)
# Initialize logger
log_dir = os.path.join(opts.exp_dir, 'logs')
os.makedirs(log_dir, exist_ok=True)
self.logger = SummaryWriter(log_dir=log_dir)
# Initialize checkpoint dir
self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints')
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.best_val_loss = None
if self.opts.save_interval is None:
self.opts.save_interval = self.opts.max_steps
def train(self):
self.net.train()
while self.global_step < self.opts.max_steps:
for batch_idx, batch in enumerate(self.train_dataloader):
self.optimizer.zero_grad()
x, y = batch
x, y = x.to(self.device).float(), y.to(self.device).float()
y_hat, latent = self.net.forward(x, return_latents=True)
loss, loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent)
loss.backward()
self.optimizer.step()
# Logging related
if self.global_step % self.opts.image_interval == 0 or (self.global_step < 1000 and self.global_step % 25 == 0):
self.parse_and_log_images(id_logs, x, y, y_hat, title='images/train/faces')
if self.global_step % self.opts.board_interval == 0:
self.print_metrics(loss_dict, prefix='train')
self.log_metrics(loss_dict, prefix='train')
# Log images of first batch to wandb
if self.opts.use_wandb and batch_idx == 0:
self.wb_logger.log_images_to_wandb(x, y, y_hat, id_logs, prefix="train", step=self.global_step, opts=self.opts)
# Validation related
val_loss_dict = None
if self.global_step % self.opts.val_interval == 0 or self.global_step == self.opts.max_steps:
val_loss_dict = self.validate()
if val_loss_dict and (self.best_val_loss is None or val_loss_dict['loss'] < self.best_val_loss):
self.best_val_loss = val_loss_dict['loss']
self.checkpoint_me(val_loss_dict, is_best=True)
if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps:
if val_loss_dict is not None:
self.checkpoint_me(val_loss_dict, is_best=False)
else:
self.checkpoint_me(loss_dict, is_best=False)
if self.global_step == self.opts.max_steps:
print('OMG, finished training!')
break
self.global_step += 1
def validate(self):
self.net.eval()
agg_loss_dict = []
for batch_idx, batch in enumerate(self.test_dataloader):
x, y = batch
with torch.no_grad():
x, y = x.to(self.device).float(), y.to(self.device).float()
y_hat, latent = self.net.forward(x, return_latents=True)
loss, cur_loss_dict, id_logs = self.calc_loss(x, y, y_hat, latent)
agg_loss_dict.append(cur_loss_dict)
# Logging related
self.parse_and_log_images(id_logs, x, y, y_hat,
title='images/test/faces',
subscript='{:04d}'.format(batch_idx))
# Log images of first batch to wandb
if self.opts.use_wandb and batch_idx == 0:
self.wb_logger.log_images_to_wandb(x, y, y_hat, id_logs, prefix="test", step=self.global_step, opts=self.opts)
# For first step just do sanity test on small amount of data
if self.global_step == 0 and batch_idx >= 4:
self.net.train()
return None # Do not log, inaccurate in first batch
loss_dict = train_utils.aggregate_loss_dict(agg_loss_dict)
self.log_metrics(loss_dict, prefix='test')
self.print_metrics(loss_dict, prefix='test')
self.net.train()
return loss_dict
def checkpoint_me(self, loss_dict, is_best):
save_name = 'best_model.pt' if is_best else f'iteration_{self.global_step}.pt'
save_dict = self.__get_save_dict()
checkpoint_path = os.path.join(self.checkpoint_dir, save_name)
torch.save(save_dict, checkpoint_path)
with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f:
if is_best:
f.write(f'**Best**: Step - {self.global_step}, Loss - {self.best_val_loss} \n{loss_dict}\n')
if self.opts.use_wandb:
self.wb_logger.log_best_model()
else:
f.write(f'Step - {self.global_step}, \n{loss_dict}\n')
def configure_optimizers(self):
params = list(self.net.encoder.parameters())
if self.opts.train_decoder:
params += list(self.net.decoder.parameters())
if self.opts.optim_name == 'adam':
optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate)
else:
optimizer = Ranger(params, lr=self.opts.learning_rate)
return optimizer
def configure_datasets(self):
if self.opts.dataset_type not in data_configs.DATASETS.keys():
Exception(f'{self.opts.dataset_type} is not a valid dataset_type')
print(f'Loading dataset for {self.opts.dataset_type}')
dataset_args = data_configs.DATASETS[self.opts.dataset_type]
transforms_dict = dataset_args['transforms'](self.opts).get_transforms()
train_dataset = ImagesDataset(source_root=dataset_args['train_source_root'],
target_root=dataset_args['train_target_root'],
source_transform=transforms_dict['transform_source'],
target_transform=transforms_dict['transform_gt_train'],
opts=self.opts)
test_dataset = ImagesDataset(source_root=dataset_args['test_source_root'],
target_root=dataset_args['test_target_root'],
source_transform=transforms_dict['transform_source'],
target_transform=transforms_dict['transform_test'],
opts=self.opts)
if self.opts.use_wandb:
self.wb_logger.log_dataset_wandb(train_dataset, dataset_name="Train")
self.wb_logger.log_dataset_wandb(test_dataset, dataset_name="Test")
print(f"Number of training samples: {len(train_dataset)}")
print(f"Number of test samples: {len(test_dataset)}")
return train_dataset, test_dataset
def calc_loss(self, x, y, y_hat, latent):
loss_dict = {}
loss = 0.0
id_logs = None
if self.opts.id_lambda > 0:
loss_id, sim_improvement, id_logs = self.id_loss(y_hat, y, x)
loss_dict['loss_id'] = float(loss_id)
loss_dict['id_improve'] = float(sim_improvement)
loss = loss_id * self.opts.id_lambda
if self.opts.l2_lambda > 0:
loss_l2 = F.mse_loss(y_hat, y)
loss_dict['loss_l2'] = float(loss_l2)
loss += loss_l2 * self.opts.l2_lambda
if self.opts.lpips_lambda > 0:
loss_lpips = self.lpips_loss(y_hat, y)
loss_dict['loss_lpips'] = float(loss_lpips)
loss += loss_lpips * self.opts.lpips_lambda
if self.opts.lpips_lambda_crop > 0:
loss_lpips_crop = self.lpips_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220])
loss_dict['loss_lpips_crop'] = float(loss_lpips_crop)
loss += loss_lpips_crop * self.opts.lpips_lambda_crop
if self.opts.l2_lambda_crop > 0:
loss_l2_crop = F.mse_loss(y_hat[:, :, 35:223, 32:220], y[:, :, 35:223, 32:220])
loss_dict['loss_l2_crop'] = float(loss_l2_crop)
loss += loss_l2_crop * self.opts.l2_lambda_crop
if self.opts.w_norm_lambda > 0:
loss_w_norm = self.w_norm_loss(latent, self.net.latent_avg)
loss_dict['loss_w_norm'] = float(loss_w_norm)
loss += loss_w_norm * self.opts.w_norm_lambda
if self.opts.moco_lambda > 0:
loss_moco, sim_improvement, id_logs = self.moco_loss(y_hat, y, x)
loss_dict['loss_moco'] = float(loss_moco)
loss_dict['id_improve'] = float(sim_improvement)
loss += loss_moco * self.opts.moco_lambda
loss_dict['loss'] = float(loss)
return loss, loss_dict, id_logs
def log_metrics(self, metrics_dict, prefix):
for key, value in metrics_dict.items():
self.logger.add_scalar(f'{prefix}/{key}', value, self.global_step)
if self.opts.use_wandb:
self.wb_logger.log(prefix, metrics_dict, self.global_step)
def print_metrics(self, metrics_dict, prefix):
print(f'Metrics for {prefix}, step {self.global_step}')
for key, value in metrics_dict.items():
print(f'\t{key} = ', value)
def parse_and_log_images(self, id_logs, x, y, y_hat, title, subscript=None, display_count=2):
im_data = []
for i in range(display_count):
cur_im_data = {
'input_face': common.log_input_image(x[i], self.opts),
'target_face': common.tensor2im(y[i]),
'output_face': common.tensor2im(y_hat[i]),
}
if id_logs is not None:
for key in id_logs[i]:
cur_im_data[key] = id_logs[i][key]
im_data.append(cur_im_data)
self.log_images(title, im_data=im_data, subscript=subscript)
def log_images(self, name, im_data, subscript=None, log_latest=False):
fig = common.vis_faces(im_data)
step = self.global_step
if log_latest:
step = 0
if subscript:
path = os.path.join(self.logger.log_dir, name, f'{subscript}_{step:04d}.jpg')
else:
path = os.path.join(self.logger.log_dir, name, f'{step:04d}.jpg')
os.makedirs(os.path.dirname(path), exist_ok=True)
fig.savefig(path)
plt.close(fig)
def __get_save_dict(self):
save_dict = {
'state_dict': self.net.state_dict(),
'opts': vars(self.opts)
}
# save the latent avg in state_dict for inference if truncation of w was used during training
if self.opts.start_from_latent_avg:
save_dict['latent_avg'] = self.net.latent_avg
return save_dict