Ohayou_Face / models /encoders /psp_encoders.py
Reevee's picture
first
f39e999
raw
history blame
7.38 kB
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import Linear, Conv2d, BatchNorm2d, PReLU, Sequential, Module
from models.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE
from models.stylegan2.model import EqualLinear
class GradualStyleBlock(Module):
def __init__(self, in_c, out_c, spatial):
super(GradualStyleBlock, self).__init__()
self.out_c = out_c
self.spatial = spatial
num_pools = int(np.log2(spatial))
modules = []
modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU()]
for i in range(num_pools - 1):
modules += [
Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU()
]
self.convs = nn.Sequential(*modules)
self.linear = EqualLinear(out_c, out_c, lr_mul=1)
def forward(self, x):
x = self.convs(x)
x = x.view(-1, self.out_c)
x = self.linear(x)
return x
class GradualStyleEncoder(Module):
def __init__(self, num_layers, mode='ir', opts=None):
super(GradualStyleEncoder, self).__init__()
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
blocks = get_blocks(num_layers)
if mode == 'ir':
unit_module = bottleneck_IR
elif mode == 'ir_se':
unit_module = bottleneck_IR_SE
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
BatchNorm2d(64),
PReLU(64))
modules = []
for block in blocks:
for bottleneck in block:
modules.append(unit_module(bottleneck.in_channel,
bottleneck.depth,
bottleneck.stride))
self.body = Sequential(*modules)
self.styles = nn.ModuleList()
self.style_count = opts.n_styles
self.coarse_ind = 3
self.middle_ind = 7
for i in range(self.style_count):
if i < self.coarse_ind:
style = GradualStyleBlock(512, 512, 16)
elif i < self.middle_ind:
style = GradualStyleBlock(512, 512, 32)
else:
style = GradualStyleBlock(512, 512, 64)
self.styles.append(style)
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
def _upsample_add(self, x, y):
'''Upsample and add two feature maps.
Args:
x: (Variable) top feature map to be upsampled.
y: (Variable) lateral feature map.
Returns:
(Variable) added feature map.
Note in PyTorch, when input size is odd, the upsampled feature map
with `F.upsample(..., scale_factor=2, mode='nearest')`
maybe not equal to the lateral feature map size.
e.g.
original input size: [N,_,15,15] ->
conv2d feature map size: [N,_,8,8] ->
upsampled feature map size: [N,_,16,16]
So we choose bilinear upsample which supports arbitrary output sizes.
'''
_, _, H, W = y.size()
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y
def forward(self, x):
x = self.input_layer(x)
latents = []
modulelist = list(self.body._modules.values())
for i, l in enumerate(modulelist):
x = l(x)
if i == 6:
c1 = x
elif i == 20:
c2 = x
elif i == 23:
c3 = x
for j in range(self.coarse_ind):
latents.append(self.styles[j](c3))
p2 = self._upsample_add(c3, self.latlayer1(c2))
for j in range(self.coarse_ind, self.middle_ind):
latents.append(self.styles[j](p2))
p1 = self._upsample_add(p2, self.latlayer2(c1))
for j in range(self.middle_ind, self.style_count):
latents.append(self.styles[j](p1))
out = torch.stack(latents, dim=1)
return out
class BackboneEncoderUsingLastLayerIntoW(Module):
def __init__(self, num_layers, mode='ir', opts=None):
super(BackboneEncoderUsingLastLayerIntoW, self).__init__()
print('Using BackboneEncoderUsingLastLayerIntoW')
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
blocks = get_blocks(num_layers)
if mode == 'ir':
unit_module = bottleneck_IR
elif mode == 'ir_se':
unit_module = bottleneck_IR_SE
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
BatchNorm2d(64),
PReLU(64))
self.output_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
self.linear = EqualLinear(512, 512, lr_mul=1)
modules = []
for block in blocks:
for bottleneck in block:
modules.append(unit_module(bottleneck.in_channel,
bottleneck.depth,
bottleneck.stride))
self.body = Sequential(*modules)
def forward(self, x):
x = self.input_layer(x)
x = self.body(x)
x = self.output_pool(x)
x = x.view(-1, 512)
x = self.linear(x)
return x
class BackboneEncoderUsingLastLayerIntoWPlus(Module):
def __init__(self, num_layers, mode='ir', opts=None):
super(BackboneEncoderUsingLastLayerIntoWPlus, self).__init__()
print('Using BackboneEncoderUsingLastLayerIntoWPlus')
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
blocks = get_blocks(num_layers)
if mode == 'ir':
unit_module = bottleneck_IR
elif mode == 'ir_se':
unit_module = bottleneck_IR_SE
self.n_styles = opts.n_styles
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
BatchNorm2d(64),
PReLU(64))
self.output_layer_2 = Sequential(BatchNorm2d(512),
torch.nn.AdaptiveAvgPool2d((7, 7)),
Flatten(),
Linear(512 * 7 * 7, 512))
self.linear = EqualLinear(512, 512 * self.n_styles, lr_mul=1)
modules = []
for block in blocks:
for bottleneck in block:
modules.append(unit_module(bottleneck.in_channel,
bottleneck.depth,
bottleneck.stride))
self.body = Sequential(*modules)
def forward(self, x):
x = self.input_layer(x)
x = self.body(x)
x = self.output_layer_2(x)
x = self.linear(x)
x = x.view(-1, self.n_styles, 512)
return x