|
import streamlit as st |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import fitz |
|
import os |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier") |
|
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096") |
|
|
|
def extract_text_from_pdf(file_path): |
|
text = '' |
|
with fitz.open(file_path) as pdf_document: |
|
for page_number in range(pdf_document.page_count): |
|
page = pdf_document.load_page(page_number) |
|
text += page.get_text() |
|
return text |
|
|
|
def predict_class(text): |
|
try: |
|
max_length = 4096 |
|
truncated_text = text[:max_length] |
|
|
|
inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
predicted_class = torch.argmax(logits, dim=1).item() |
|
return predicted_class |
|
except Exception as e: |
|
st.error(f"Error during prediction: {e}") |
|
return None |
|
|
|
uploaded_files_dir = "uploaded_files" |
|
os.makedirs(uploaded_files_dir, exist_ok=True) |
|
|
|
st.title("Paper Citation Classifier") |
|
option = st.radio("Select input type:", ("Text", "PDF")) |
|
|
|
if option == "Text": |
|
text_input = st.text_area("Enter your text here:") |
|
if st.button("Predict") and text_input.strip(): |
|
predicted_class = predict_class(text_input) |
|
if predicted_class is not None: |
|
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"] |
|
st.text(f"Predicted Class: {class_labels[predicted_class]}") |
|
|
|
elif option == "PDF": |
|
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"]) |
|
|
|
if uploaded_file is not None: |
|
file_path = os.path.join(uploaded_files_dir, uploaded_file.name) |
|
with open(file_path, "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
st.success("File uploaded successfully.") |
|
st.text(f"File Path: {file_path}") |
|
|
|
file_text = extract_text_from_pdf(file_path) |
|
st.text("Extracted Text:") |
|
st.text(file_text) |
|
|
|
if st.button("Predict"): |
|
predicted_class = predict_class(file_text) |
|
if predicted_class is not None: |
|
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"] |
|
st.text(f"Predicted Class: {class_labels[predicted_class]}") |
|
|