Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import torch
|
3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
-
import fitz
|
5 |
-
import os
|
6 |
-
|
7 |
-
model = AutoModelForSequenceClassification.from_pretrained("Reem333/Citaion-Classifier")
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
|
9 |
-
|
10 |
-
def extract_text_from_pdf(file_path):
|
11 |
-
text = ''
|
12 |
-
with fitz.open(file_path) as pdf_document:
|
13 |
-
for page_number in range(pdf_document.page_count):
|
14 |
-
page = pdf_document.load_page(page_number)
|
15 |
-
text += page.get_text()
|
16 |
-
return text
|
17 |
-
|
18 |
-
def predict_class(text):
|
19 |
-
try:
|
20 |
-
max_length = 4096
|
21 |
-
truncated_text = text[:max_length]
|
22 |
-
|
23 |
-
inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
|
24 |
-
with torch.no_grad():
|
25 |
-
outputs = model(**inputs)
|
26 |
-
logits = outputs.logits
|
27 |
-
predicted_class = torch.argmax(logits, dim=1).item()
|
28 |
-
return predicted_class
|
29 |
-
except Exception as e:
|
30 |
-
st.error(f"Error during prediction: {e}")
|
31 |
-
return None
|
32 |
-
|
33 |
-
uploaded_files_dir = "uploaded_files"
|
34 |
-
os.makedirs(uploaded_files_dir, exist_ok=True)
|
35 |
-
|
36 |
-
st.title("Paper Citation Classifier")
|
37 |
-
option = st.radio("Select input type:", ("Text", "PDF"))
|
38 |
-
|
39 |
-
if option == "Text":
|
40 |
-
text_input = st.text_area("Enter your text here:")
|
41 |
-
if st.button("Predict") and text_input.strip():
|
42 |
-
predicted_class = predict_class(text_input)
|
43 |
-
if predicted_class is not None:
|
44 |
-
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
|
45 |
-
st.text(f"Predicted Class: {class_labels[predicted_class]}")
|
46 |
-
|
47 |
-
elif option == "PDF":
|
48 |
-
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
49 |
-
|
50 |
-
if uploaded_file is not None:
|
51 |
-
file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
|
52 |
-
with open(file_path, "wb") as f:
|
53 |
-
f.write(uploaded_file.getbuffer())
|
54 |
-
st.success("File uploaded successfully.")
|
55 |
-
st.text(f"File Path: {file_path}")
|
56 |
-
|
57 |
-
file_text = extract_text_from_pdf(file_path)
|
58 |
-
st.text("Extracted Text:")
|
59 |
-
st.text(file_text)
|
60 |
-
|
61 |
-
if st.button("Predict"):
|
62 |
-
predicted_class = predict_class(file_text)
|
63 |
-
if predicted_class is not None:
|
64 |
-
class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
|
65 |
-
st.text(f"Predicted Class: {class_labels[predicted_class]}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|