Spaces:
Runtime error
Runtime error
| import cv2 | |
| import numpy as np | |
| from typing import Dict, List, Tuple | |
| import colorsys | |
| from pytoshop import layers | |
| from pytoshop.enums import BlendMode | |
| from pytoshop.core import PsdFile | |
| from modules.constants import DEFAULT_COLOR, DEFAULT_PIXEL_SIZE | |
| def decode_to_mask(seg: np.ndarray[np.bool_] | np.ndarray[np.uint8]) -> np.ndarray[np.uint8]: | |
| """Decode to uint8 mask from bool to deal with as images""" | |
| if isinstance(seg, np.ndarray) and seg.dtype == np.bool_: | |
| return seg.astype(np.uint8) * 255 | |
| else: | |
| return seg.astype(np.uint8) | |
| def invert_masks(masks: List[Dict]) -> List[Dict]: | |
| """Invert the masks. Used for background masking""" | |
| inverted = 1 - masks | |
| return inverted | |
| def generate_random_color() -> Tuple[int, int, int]: | |
| """Generate random color in RGB format""" | |
| h = np.random.randint(0, 360) | |
| s = np.random.randint(70, 100) / 100 | |
| v = np.random.randint(70, 100) / 100 | |
| r, g, b = colorsys.hsv_to_rgb(h/360, s, v) | |
| return int(r * 255), int(g * 255), int(b * 255) | |
| def create_base_layer(image: np.ndarray) -> List[np.ndarray]: | |
| """Create a base layer from the image. Used to keep original image""" | |
| rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA) | |
| return [rgba_image] | |
| def create_mask_layers( | |
| image: np.ndarray, | |
| masks: List[Dict] | |
| ) -> List[np.ndarray]: | |
| """ | |
| Create list of images with mask data. Masks are sorted by area in descending order. | |
| Args: | |
| image: Original image | |
| masks: List of mask data | |
| Returns: | |
| List of RGBA images | |
| """ | |
| layer_list = [] | |
| sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True) | |
| for info in sorted_masks: | |
| rle = info['segmentation'] | |
| mask = decode_to_mask(rle) | |
| rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA) | |
| rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask) | |
| layer_list.append(rgba_image) | |
| return layer_list | |
| def create_mask_gallery( | |
| image: np.ndarray, | |
| masks: List[Dict] | |
| ) -> List: | |
| """ | |
| Create list of images with mask data. Masks are sorted by area in descending order. Specially used for gradio | |
| Gallery component. each element has image and label, where label is the part number. | |
| Args: | |
| image: Original image | |
| masks: List of mask data | |
| Returns: | |
| List of [image, label] pairs | |
| """ | |
| mask_array_list = [] | |
| label_list = [] | |
| sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True) | |
| for index, info in enumerate(sorted_masks): | |
| rle = info['segmentation'] | |
| mask = decode_to_mask(rle) | |
| rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA) | |
| rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask) | |
| mask_array_list.append(rgba_image) | |
| label_list.append(f'Part {index}') | |
| return [[img, label] for img, label in zip(mask_array_list, label_list)] | |
| def create_mask_combined_images( | |
| image: np.ndarray, | |
| masks: List[Dict] | |
| ) -> List: | |
| """ | |
| Create an image with colored masks. Each mask is colored with a random color and blended with the original image. | |
| Args: | |
| image: Original image | |
| masks: List of mask data | |
| Returns: | |
| [image, label] pairs | |
| """ | |
| final_result = np.zeros_like(image) | |
| used_colors = set() | |
| for info in masks: | |
| rle = info['segmentation'] | |
| mask = decode_to_mask(rle) | |
| while True: | |
| color = generate_random_color() | |
| if color not in used_colors: | |
| used_colors.add(color) | |
| break | |
| colored_mask = np.zeros_like(image) | |
| colored_mask[mask > 0] = color | |
| blended = cv2.addWeighted(image, 0.3, colored_mask, 0.7, 0) | |
| final_result = np.where(mask[:, :, np.newaxis] > 0, blended, final_result) | |
| combined_image = np.where(final_result != 0, final_result, image) | |
| hsv = cv2.cvtColor(combined_image, cv2.COLOR_BGR2HSV) | |
| hsv[:, :, 1] = np.clip(hsv[:, :, 1] * 1.5, 0, 255) | |
| enhanced = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | |
| return [enhanced, "Masked"] | |
| def create_mask_pixelized_image( | |
| image: np.ndarray, | |
| masks: List[Dict], | |
| pixel_size: int = DEFAULT_PIXEL_SIZE | |
| ) -> np.ndarray: | |
| """ | |
| Create a pixelized image with mask. | |
| Args: | |
| image: Original image | |
| masks: List of mask data | |
| pixel_size: Pixel size for pixelization | |
| Returns: | |
| Pixelized image | |
| """ | |
| final_result = image.copy() | |
| def pixelize(img: np.ndarray, mask: np.ndarray[np.uint8], pixel_size: int): | |
| h, w = img.shape[:2] | |
| temp = cv2.resize(img, (w // pixel_size, h // pixel_size), interpolation=cv2.INTER_LINEAR) | |
| pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST) | |
| return np.where(mask[:, :, np.newaxis] > 0, pixelated, img) | |
| for info in masks: | |
| rle = info['segmentation'] | |
| mask = decode_to_mask(rle) | |
| pixelated_segment = pixelize(final_result, mask, pixel_size) | |
| final_result = np.where(mask[:, :, np.newaxis] > 0, pixelated_segment, final_result) | |
| return final_result | |
| def create_solid_color_mask_image( | |
| image: np.ndarray, | |
| masks: List[Dict], | |
| color_hex: str = DEFAULT_COLOR | |
| ) -> np.ndarray: | |
| """ | |
| Create an image with solid color masks. | |
| Args: | |
| image: Original image | |
| masks: List of mask data | |
| color_hex: Hex color code | |
| Returns: | |
| Image with solid color masks | |
| """ | |
| final_result = image.copy() | |
| def hex_to_bgr(hex_color: str): | |
| hex_color = hex_color.lstrip('#') | |
| rgb = tuple(int(hex_color[i:i + 2], 16) for i in (0, 2, 4)) | |
| return rgb[::-1] | |
| color_bgr = hex_to_bgr(color_hex) | |
| for info in masks: | |
| rle = info['segmentation'] | |
| mask = decode_to_mask(rle) | |
| solid_color_mask = np.full(image.shape, color_bgr, dtype=np.uint8) | |
| final_result = np.where(mask[:, :, np.newaxis] > 0, solid_color_mask, final_result) | |
| return final_result | |
| def insert_psd_layer( | |
| psd: PsdFile, | |
| image_data: np.ndarray, | |
| layer_name: str, | |
| blending_mode: BlendMode | |
| ) -> PsdFile: | |
| """ | |
| Insert a layer into the PSD file using pytoshop | |
| Args: | |
| psd: PSD file object from the pytoshop | |
| image_data: Image data | |
| layer_name: Layer name | |
| blending_mode: Blending mode from pytoshop | |
| Returns: | |
| Updated PSD file object | |
| """ | |
| channel_data = [layers.ChannelImageData(image=image_data[:, :, i], compression=1) for i in range(4)] | |
| layer_record = layers.LayerRecord( | |
| channels={-1: channel_data[3], 0: channel_data[0], 1: channel_data[1], 2: channel_data[2]}, | |
| top=0, bottom=image_data.shape[0], left=0, right=image_data.shape[1], | |
| blend_mode=blending_mode, | |
| name=layer_name, | |
| opacity=255, | |
| ) | |
| psd.layer_and_mask_info.layer_info.layer_records.append(layer_record) | |
| return psd | |
| def save_psd( | |
| input_image_data: np.ndarray, | |
| layer_data: List, | |
| layer_names: List, | |
| blending_modes: List, | |
| output_path: str | |
| ): | |
| """ | |
| Save the image with multiple layers as a PSD file | |
| Args: | |
| input_image_data: Original image data | |
| layer_data: List of images to be saved as layers | |
| layer_names: List of layer names | |
| blending_modes: List of blending modes | |
| output_path: Output path for the PSD file | |
| """ | |
| psd_file = PsdFile(num_channels=3, height=input_image_data.shape[0], width=input_image_data.shape[1]) | |
| psd_file.layer_and_mask_info.layer_info.layer_records.clear() | |
| for index, layer in enumerate(layer_data): | |
| psd_file = insert_psd_layer(psd_file, layer, layer_names[index], blending_modes[index]) | |
| with open(output_path, 'wb') as output_file: | |
| psd_file.write(output_file) | |
| def save_psd_with_masks( | |
| image: np.ndarray, | |
| masks: List[Dict], | |
| output_path: str | |
| ): | |
| """ | |
| Save the psd file with masks data. | |
| Args: | |
| image: Original image | |
| masks: List of mask data | |
| output_path: Output path for the PSD file | |
| """ | |
| original_layer = create_base_layer(image) | |
| mask_layers = create_mask_layers(image, masks) | |
| names = [f'Part {i}' for i in range(len(mask_layers))] | |
| modes = [BlendMode.normal] * (len(mask_layers)+1) | |
| save_psd(image, original_layer+mask_layers, ['Original_Image']+names, modes, output_path) | |