sam2-playground / modules /mask_utils.py
jhj0517
Add pixelize & solid color filter function
60def5b
raw
history blame
5.88 kB
import cv2
import numpy as np
from typing import Dict, List
import colorsys
from pytoshop import layers
from pytoshop.enums import BlendMode
from pytoshop.core import PsdFile
from modules.constants import DEFAULT_COLOR, DEFAULT_PIXEL_SIZE
def decode_to_mask(seg: np.ndarray[np.bool_] | np.ndarray[np.uint8]) -> np.ndarray[np.uint8]:
if isinstance(seg, np.ndarray) and seg.dtype == np.bool_:
return seg.astype(np.uint8) * 255
else:
return seg.astype(np.uint8)
def generate_random_color():
h = np.random.randint(0, 360)
s = np.random.randint(70, 100) / 100
v = np.random.randint(70, 100) / 100
r, g, b = colorsys.hsv_to_rgb(h/360, s, v)
return int(r * 255), int(g * 255), int(b * 255)
def create_base_layer(image: np.ndarray):
rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
return [rgba_image]
def create_mask_layers(
image: np.ndarray,
masks: List
):
layer_list = []
sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True)
for info in sorted_masks:
rle = info['segmentation']
mask = decode_to_mask(rle)
rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask)
layer_list.append(rgba_image)
return layer_list
def create_mask_gallery(
image: np.ndarray,
masks: List
):
mask_array_list = []
label_list = []
sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True)
for index, info in enumerate(sorted_masks):
rle = info['segmentation']
mask = decode_to_mask(rle)
rgba_image = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
rgba_image[..., 3] = cv2.bitwise_and(rgba_image[..., 3], rgba_image[..., 3], mask=mask)
mask_array_list.append(rgba_image)
label_list.append(f'Part {index}')
return [[img, label] for img, label in zip(mask_array_list, label_list)]
def create_mask_combined_images(
image: np.ndarray,
masks: List
):
final_result = np.zeros_like(image)
used_colors = set()
for info in masks:
rle = info['segmentation']
mask = decode_to_mask(rle)
while True:
color = generate_random_color()
if color not in used_colors:
used_colors.add(color)
break
colored_mask = np.zeros_like(image)
colored_mask[mask > 0] = color
blended = cv2.addWeighted(image, 0.3, colored_mask, 0.7, 0)
final_result = np.where(mask[:, :, np.newaxis] > 0, blended, final_result)
combined_image = np.where(final_result != 0, final_result, image)
hsv = cv2.cvtColor(combined_image, cv2.COLOR_BGR2HSV)
hsv[:, :, 1] = np.clip(hsv[:, :, 1] * 1.5, 0, 255)
enhanced = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
return [enhanced, "Masked"]
def create_mask_pixelized_image(
image: np.ndarray,
masks: List,
pixel_size: int = DEFAULT_PIXEL_SIZE
):
final_result = image.copy()
def pixelize(img: np.ndarray, mask: np.ndarray[np.uint8], pixel_size: int):
h, w = img.shape[:2]
temp = cv2.resize(img, (w // pixel_size, h // pixel_size), interpolation=cv2.INTER_LINEAR)
pixelated = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
return np.where(mask[:, :, np.newaxis] > 0, pixelated, img)
for info in masks:
rle = info['segmentation']
mask = decode_to_mask(rle)
pixelated_segment = pixelize(final_result, mask, pixel_size)
final_result = np.where(mask[:, :, np.newaxis] > 0, pixelated_segment, final_result)
return final_result
def create_solid_color_mask_image(
image: np.ndarray,
masks: List,
color_hex: str = DEFAULT_COLOR
):
final_result = image.copy()
def hex_to_bgr(hex_color: str):
hex_color = hex_color.lstrip('#')
rgb = tuple(int(hex_color[i:i + 2], 16) for i in (0, 2, 4))
return rgb[::-1]
color_bgr = hex_to_bgr(color_hex)
for info in masks:
rle = info['segmentation']
mask = decode_to_mask(rle)
solid_color_mask = np.full(image.shape, color_bgr, dtype=np.uint8)
final_result = np.where(mask[:, :, np.newaxis] > 0, solid_color_mask, final_result)
return final_result
def insert_psd_layer(
psd: PsdFile,
image_data: np.ndarray,
layer_name: str,
blending_mode: BlendMode
):
channel_data = [layers.ChannelImageData(image=image_data[:, :, i], compression=1) for i in range(4)]
layer_record = layers.LayerRecord(
channels={-1: channel_data[3], 0: channel_data[0], 1: channel_data[1], 2: channel_data[2]},
top=0, bottom=image_data.shape[0], left=0, right=image_data.shape[1],
blend_mode=blending_mode,
name=layer_name,
opacity=255,
)
psd.layer_and_mask_info.layer_info.layer_records.append(layer_record)
return psd
def save_psd(
input_image_data: np.ndarray,
layer_data: List,
layer_names: List,
blending_modes: List,
output_path: str
):
psd_file = PsdFile(num_channels=3, height=input_image_data.shape[0], width=input_image_data.shape[1])
psd_file.layer_and_mask_info.layer_info.layer_records.clear()
for index, layer in enumerate(layer_data):
psd_file = insert_psd_layer(psd_file, layer, layer_names[index], blending_modes[index])
with open(output_path, 'wb') as output_file:
psd_file.write(output_file)
def save_psd_with_masks(
image: np.ndarray,
masks: List,
output_path: str
):
original_layer = create_base_layer(image)
mask_layers = create_mask_layers(image, masks)
names = [f'Part {i}' for i in range(len(mask_layers))]
modes = [BlendMode.normal] * (len(mask_layers)+1)
save_psd(image, original_layer+mask_layers, ['Original_Image']+names, modes, output_path)