Spaces:
Sleeping
Sleeping
jhj0517
commited on
Commit
•
e56e825
1
Parent(s):
bbbee26
Add video propagation
Browse files- app.py +3 -0
- modules/sam_inference.py +121 -47
app.py
CHANGED
@@ -191,6 +191,9 @@ class App:
|
|
191 |
btn_generate_preview.click(fn=self.sam_inf.add_filter_to_preview,
|
192 |
inputs=preview_params,
|
193 |
outputs=[img_preview])
|
|
|
|
|
|
|
194 |
|
195 |
self.demo.queue().launch(inbrowser=True)
|
196 |
|
|
|
191 |
btn_generate_preview.click(fn=self.sam_inf.add_filter_to_preview,
|
192 |
inputs=preview_params,
|
193 |
outputs=[img_preview])
|
194 |
+
btn_generate.click(fn=self.sam_inf.add_filter_to_video,
|
195 |
+
inputs=preview_params,
|
196 |
+
outputs=None)
|
197 |
|
198 |
self.demo.queue().launch(inbrowser=True)
|
199 |
|
modules/sam_inference.py
CHANGED
@@ -14,7 +14,7 @@ from modules.model_downloader import (
|
|
14 |
is_sam_exist,
|
15 |
download_sam_model_url
|
16 |
)
|
17 |
-
from modules.paths import SAM2_CONFIGS_DIR, MODELS_DIR
|
18 |
from modules.constants import BOX_PROMPT_MODE, AUTOMATIC_MODE, COLOR_FILTER, PIXELIZE_FILTER
|
19 |
from modules.mask_utils import (
|
20 |
save_psd_with_masks,
|
@@ -23,6 +23,8 @@ from modules.mask_utils import (
|
|
23 |
create_mask_pixelized_image,
|
24 |
create_solid_color_mask_image
|
25 |
)
|
|
|
|
|
26 |
from modules.logger_util import get_logger
|
27 |
|
28 |
MODEL_CONFIGS = {
|
@@ -45,7 +47,8 @@ class SamInference:
|
|
45 |
self.model_dir = model_dir
|
46 |
self.output_dir = output_dir
|
47 |
self.model_path = os.path.join(self.model_dir, AVAILABLE_MODELS[DEFAULT_MODEL_TYPE][0])
|
48 |
-
self.device =
|
|
|
49 |
self.mask_generator = None
|
50 |
self.image_predictor = None
|
51 |
self.video_predictor = None
|
@@ -89,8 +92,10 @@ class SamInference:
|
|
89 |
raise f"Error while loading SAM2 model!: {e}"
|
90 |
|
91 |
def init_video_inference_state(self,
|
92 |
-
|
93 |
-
|
|
|
|
|
94 |
|
95 |
if self.video_predictor is None or model_type != self.current_model_type:
|
96 |
self.current_model_type = model_type
|
@@ -141,21 +146,25 @@ class SamInference:
|
|
141 |
multimask_output=params["multimask_output"],
|
142 |
)
|
143 |
except Exception as e:
|
144 |
-
logger.exception("Error while predicting image with prompt")
|
145 |
-
raise f"Error while predicting image with prompt: {str(e)}"
|
146 |
return masks, scores, logits
|
147 |
|
148 |
-
def
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
if self.video_predictor is None or
|
|
|
156 |
logger.exception("Error while predicting frame from video, load video predictor first")
|
157 |
raise f"Error while predicting frame from video"
|
158 |
|
|
|
|
|
|
|
159 |
try:
|
160 |
out_frame_idx, out_obj_ids, out_mask_logits = self.video_predictor.add_new_points_or_box(
|
161 |
inference_state=inference_state,
|
@@ -166,15 +175,43 @@ class SamInference:
|
|
166 |
box=box
|
167 |
)
|
168 |
except Exception as e:
|
169 |
-
logger.exception("Error while predicting frame with prompt")
|
170 |
-
|
171 |
-
raise f"Error while predicting frame with prompt"
|
172 |
|
173 |
return out_frame_idx, out_obj_ids, out_mask_logits
|
174 |
|
175 |
-
def
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
def add_filter_to_preview(self,
|
180 |
image_prompt_input_data: Dict,
|
@@ -183,49 +220,86 @@ class SamInference:
|
|
183 |
pixel_size: Optional[int] = None,
|
184 |
color_hex: Optional[str] = None,
|
185 |
):
|
186 |
-
if not image_prompt_input_data["points"]:
|
187 |
-
error_message = ("Prompt data is empty! Please provide at least one point or box on the image. <br>"
|
188 |
-
"If you've already added prompts, please press the eraser button "
|
189 |
-
"and add your prompts again.")
|
190 |
-
logger.error(error_message)
|
191 |
-
raise gr.Error(error_message, duration=20)
|
192 |
-
|
193 |
if self.video_predictor is None or self.video_inference_state is None:
|
194 |
logger.exception("Error while adding filter to preview, load video predictor first")
|
195 |
raise f"Error while adding filter to preview"
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
image, prompt = image_prompt_input_data["image"], image_prompt_input_data["points"]
|
198 |
image = np.array(image.convert("RGB"))
|
199 |
|
200 |
point_labels, point_coords, box = self.handle_prompt_data(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
if filter_mode == COLOR_FILTER:
|
203 |
-
idx, scores, logits = self.predict_frame(
|
204 |
-
frame_idx=frame_idx,
|
205 |
-
obj_id=0,
|
206 |
-
inference_state=self.video_inference_state,
|
207 |
-
points=point_coords,
|
208 |
-
labels=point_labels,
|
209 |
-
box=box
|
210 |
-
)
|
211 |
-
masks = (logits[0] > 0.0).cpu().numpy()
|
212 |
-
generated_masks = self.format_to_auto_result(masks)
|
213 |
image = create_solid_color_mask_image(image, generated_masks, color_hex)
|
214 |
|
215 |
elif filter_mode == PIXELIZE_FILTER:
|
216 |
-
idx, scores, logits = self.predict_frame(
|
217 |
-
frame_idx=frame_idx,
|
218 |
-
obj_id=0,
|
219 |
-
inference_state=self.video_inference_state,
|
220 |
-
points=point_coords,
|
221 |
-
labels=point_labels,
|
222 |
-
box=box
|
223 |
-
)
|
224 |
-
masks = (logits[0] > 0.0).cpu().numpy()
|
225 |
-
generated_masks = self.format_to_auto_result(masks)
|
226 |
image = create_mask_pixelized_image(image, generated_masks, pixel_size)
|
|
|
227 |
return image
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
def divide_layer(self,
|
230 |
image_input: np.ndarray,
|
231 |
image_prompt_input_data: Dict,
|
|
|
14 |
is_sam_exist,
|
15 |
download_sam_model_url
|
16 |
)
|
17 |
+
from modules.paths import SAM2_CONFIGS_DIR, MODELS_DIR, TEMP_OUT_DIR, TEMP_DIR
|
18 |
from modules.constants import BOX_PROMPT_MODE, AUTOMATIC_MODE, COLOR_FILTER, PIXELIZE_FILTER
|
19 |
from modules.mask_utils import (
|
20 |
save_psd_with_masks,
|
|
|
23 |
create_mask_pixelized_image,
|
24 |
create_solid_color_mask_image
|
25 |
)
|
26 |
+
from modules.video_utils import get_frames_from_dir
|
27 |
+
from modules.utils import save_image
|
28 |
from modules.logger_util import get_logger
|
29 |
|
30 |
MODEL_CONFIGS = {
|
|
|
47 |
self.model_dir = model_dir
|
48 |
self.output_dir = output_dir
|
49 |
self.model_path = os.path.join(self.model_dir, AVAILABLE_MODELS[DEFAULT_MODEL_TYPE][0])
|
50 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
51 |
+
self.dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
52 |
self.mask_generator = None
|
53 |
self.image_predictor = None
|
54 |
self.video_predictor = None
|
|
|
92 |
raise f"Error while loading SAM2 model!: {e}"
|
93 |
|
94 |
def init_video_inference_state(self,
|
95 |
+
vid_input: str,
|
96 |
+
model_type: Optional[str] = None):
|
97 |
+
if model_type is None:
|
98 |
+
model_type = self.current_model_type
|
99 |
|
100 |
if self.video_predictor is None or model_type != self.current_model_type:
|
101 |
self.current_model_type = model_type
|
|
|
146 |
multimask_output=params["multimask_output"],
|
147 |
)
|
148 |
except Exception as e:
|
149 |
+
logger.exception(f"Error while predicting image with prompt: {str(e)}")
|
150 |
+
raise RuntimeError(f"Error while predicting image with prompt: {str(e)}") from e
|
151 |
return masks, scores, logits
|
152 |
|
153 |
+
def add_prediction_to_frame(self,
|
154 |
+
frame_idx: int,
|
155 |
+
obj_id: int,
|
156 |
+
inference_state: Optional[Dict] = None,
|
157 |
+
points: Optional[np.ndarray] = None,
|
158 |
+
labels: Optional[np.ndarray] = None,
|
159 |
+
box: Optional[np.ndarray] = None):
|
160 |
+
if (self.video_predictor is None or
|
161 |
+
inference_state is None and self.video_inference_state is None):
|
162 |
logger.exception("Error while predicting frame from video, load video predictor first")
|
163 |
raise f"Error while predicting frame from video"
|
164 |
|
165 |
+
if inference_state is None:
|
166 |
+
inference_state = self.video_inference_state
|
167 |
+
|
168 |
try:
|
169 |
out_frame_idx, out_obj_ids, out_mask_logits = self.video_predictor.add_new_points_or_box(
|
170 |
inference_state=inference_state,
|
|
|
175 |
box=box
|
176 |
)
|
177 |
except Exception as e:
|
178 |
+
logger.exception(f"Error while predicting frame with prompt: {str(e)}")
|
179 |
+
raise RuntimeError(f"Failed to predicting frame with prompt: {str(e)}") from e
|
|
|
180 |
|
181 |
return out_frame_idx, out_obj_ids, out_mask_logits
|
182 |
|
183 |
+
def propagate_in_video(self,
|
184 |
+
inference_state: Optional[Dict] = None,):
|
185 |
+
if inference_state is None and self.video_inference_state is None:
|
186 |
+
logger.exception("Error while propagating in video, load video predictor first")
|
187 |
+
raise f"Error while propagating in video"
|
188 |
+
|
189 |
+
if inference_state is None:
|
190 |
+
inference_state = self.video_inference_state
|
191 |
+
|
192 |
+
video_segments = {}
|
193 |
+
|
194 |
+
try:
|
195 |
+
generator = self.video_predictor.propagate_in_video(
|
196 |
+
inference_state=inference_state,
|
197 |
+
start_frame_idx=0
|
198 |
+
)
|
199 |
+
cached_images = inference_state["images"]
|
200 |
+
images = get_frames_from_dir(vid_dir=TEMP_DIR, as_numpy=True)
|
201 |
+
|
202 |
+
with torch.autocast(device_type=self.device, dtype=torch.float16):
|
203 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in generator:
|
204 |
+
mask = (out_mask_logits[0] > 0.0).cpu().numpy()
|
205 |
+
video_segments[out_frame_idx] = {
|
206 |
+
"image": images[out_frame_idx],
|
207 |
+
"mask": mask
|
208 |
+
}
|
209 |
+
print("frame_idx: ", out_frame_idx)
|
210 |
+
except Exception as e:
|
211 |
+
logger.exception(f"Error while propagating in video: {str(e)}")
|
212 |
+
raise RuntimeError(f"Failed to propagate in video: {str(e)}") from e
|
213 |
+
|
214 |
+
return video_segments
|
215 |
|
216 |
def add_filter_to_preview(self,
|
217 |
image_prompt_input_data: Dict,
|
|
|
220 |
pixel_size: Optional[int] = None,
|
221 |
color_hex: Optional[str] = None,
|
222 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
if self.video_predictor is None or self.video_inference_state is None:
|
224 |
logger.exception("Error while adding filter to preview, load video predictor first")
|
225 |
raise f"Error while adding filter to preview"
|
226 |
|
227 |
+
if not image_prompt_input_data["points"]:
|
228 |
+
error_message = ("No prompt data provided. If this is an incorrect flag, "
|
229 |
+
"Please press the eraser button (on the image prompter) and add your prompts again.")
|
230 |
+
logger.error(error_message)
|
231 |
+
raise gr.Error(error_message, duration=20)
|
232 |
+
|
233 |
image, prompt = image_prompt_input_data["image"], image_prompt_input_data["points"]
|
234 |
image = np.array(image.convert("RGB"))
|
235 |
|
236 |
point_labels, point_coords, box = self.handle_prompt_data(prompt)
|
237 |
+
obj_id = frame_idx
|
238 |
+
|
239 |
+
self.video_predictor.reset_state(self.video_inference_state)
|
240 |
+
idx, scores, logits = self.add_prediction_to_frame(
|
241 |
+
frame_idx=frame_idx,
|
242 |
+
obj_id=obj_id,
|
243 |
+
inference_state=self.video_inference_state,
|
244 |
+
points=point_coords,
|
245 |
+
labels=point_labels,
|
246 |
+
box=box
|
247 |
+
)
|
248 |
+
masks = (logits[0] > 0.0).cpu().numpy()
|
249 |
+
generated_masks = self.format_to_auto_result(masks)
|
250 |
|
251 |
if filter_mode == COLOR_FILTER:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
image = create_solid_color_mask_image(image, generated_masks, color_hex)
|
253 |
|
254 |
elif filter_mode == PIXELIZE_FILTER:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
image = create_mask_pixelized_image(image, generated_masks, pixel_size)
|
256 |
+
|
257 |
return image
|
258 |
|
259 |
+
def add_filter_to_video(self,
|
260 |
+
image_prompt_input_data: Dict,
|
261 |
+
filter_mode: str,
|
262 |
+
frame_idx: int,
|
263 |
+
pixel_size: Optional[int] = None,
|
264 |
+
color_hex: Optional[str] = None,):
|
265 |
+
if self.video_predictor is None or self.video_inference_state is None:
|
266 |
+
logger.exception("Error while adding filter to preview, load video predictor first")
|
267 |
+
raise f"Error while adding filter to preview"
|
268 |
+
|
269 |
+
if not image_prompt_input_data["points"]:
|
270 |
+
error_message = ("No prompt data provided. If this is an incorrect flag, "
|
271 |
+
"Please press the eraser button (on the image prompter) and add your prompts again.")
|
272 |
+
logger.error(error_message)
|
273 |
+
raise gr.Error(error_message, duration=20)
|
274 |
+
|
275 |
+
prompt_frame_image, prompt = image_prompt_input_data["image"], image_prompt_input_data["points"]
|
276 |
+
|
277 |
+
point_labels, point_coords, box = self.handle_prompt_data(prompt)
|
278 |
+
obj_id = frame_idx
|
279 |
+
|
280 |
+
self.video_predictor.reset_state(self.video_inference_state)
|
281 |
+
idx, scores, logits = self.add_prediction_to_frame(
|
282 |
+
frame_idx=frame_idx,
|
283 |
+
obj_id=obj_id,
|
284 |
+
inference_state=self.video_inference_state,
|
285 |
+
points=point_coords,
|
286 |
+
labels=point_labels,
|
287 |
+
box=box
|
288 |
+
)
|
289 |
+
|
290 |
+
video_segments = self.propagate_in_video(inference_state=self.video_inference_state)
|
291 |
+
for frame_index, info in video_segments.items():
|
292 |
+
orig_image, masks = info["image"], info["mask"]
|
293 |
+
masks = self.format_to_auto_result(masks)
|
294 |
+
|
295 |
+
if filter_mode == COLOR_FILTER:
|
296 |
+
filtered_image = create_solid_color_mask_image(orig_image, masks, color_hex)
|
297 |
+
|
298 |
+
elif filter_mode == PIXELIZE_FILTER:
|
299 |
+
filtered_image = create_mask_pixelized_image(orig_image, masks, pixel_size)
|
300 |
+
|
301 |
+
save_image(filtered_image, os.path.join(TEMP_OUT_DIR, "%05d.jpg"))
|
302 |
+
|
303 |
def divide_layer(self,
|
304 |
image_input: np.ndarray,
|
305 |
image_prompt_input_data: Dict,
|