Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,8 +19,59 @@ def deepgram_transcribe(audio_file):
|
|
19 |
return transcription
|
20 |
|
21 |
def assemblyai_transcribe(audio_file):
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
return transcription
|
25 |
|
26 |
# Sentiment analysis function
|
|
|
19 |
return transcription
|
20 |
|
21 |
def assemblyai_transcribe(audio_file):
|
22 |
+
import assemblyai as aai
|
23 |
+
|
24 |
+
# Replace with your API key
|
25 |
+
aai.settings.api_key = "96206c6070cf4157b84f4f8eb66b5903"
|
26 |
+
|
27 |
+
# URL of the file to transcribe
|
28 |
+
#FILE_URL = "https://assemblyaiusercontent.com/playground/ECw2Ncu7btO.mp3"
|
29 |
+
#FILE_URL = "C:/lakshmi/AI usecases/tamil_audio1.mp3"
|
30 |
+
|
31 |
+
# You can also transcribe a local file by passing in a file path
|
32 |
+
# FILE_URL = './path/to/file.mp3'
|
33 |
+
|
34 |
+
# You can set additional parameters for the transcription
|
35 |
+
config = aai.TranscriptionConfig(
|
36 |
+
speech_model=aai.SpeechModel.nano,
|
37 |
+
|
38 |
+
language_detection=True
|
39 |
+
)
|
40 |
+
|
41 |
+
transcriber = aai.Transcriber(config=config)
|
42 |
+
transcript = transcriber.transcribe(audio_file)
|
43 |
+
|
44 |
+
if transcript.status == aai.TranscriptStatus.error:
|
45 |
+
print(transcript.error)
|
46 |
+
else:
|
47 |
+
print(transcript.text)
|
48 |
+
# Load a pre-trained sentiment analysis model for Tamil
|
49 |
+
#test_script = "இந்த செய்தி மிகவும் சோகம் மிகுந்தது.இந்த செய்தி நன்றாக உள்ளது."
|
50 |
+
"""from transformers import pipeline
|
51 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
|
52 |
+
result = sentiment_analyzer(transcript.text)
|
53 |
+
print(result)
|
54 |
+
|
55 |
+
lines = test_script.split('.') # Split the transcript into lines
|
56 |
+
sentiment_results = []
|
57 |
+
|
58 |
+
for line in lines:
|
59 |
+
line = line.strip() # Remove leading/trailing whitespace
|
60 |
+
if line: # Only analyze non-empty lines
|
61 |
+
sentiment = sentiment_analyzer(line)
|
62 |
+
sentiment_results.append((line, sentiment))
|
63 |
+
print(sentiment_results)
|
64 |
+
# Write the Tamil text to a file
|
65 |
+
with open("tamil_text1.txt", "w", encoding="utf-8") as file:
|
66 |
+
file.write(transcript.text)
|
67 |
+
|
68 |
+
# Write the sentiment analysis results to a file
|
69 |
+
|
70 |
+
# Write the list of dictionaries in a human-readable format
|
71 |
+
with open("tamil_result.txt", 'w', encoding='utf-8') as file:
|
72 |
+
for result in sentiment_results:
|
73 |
+
file.write(f"Label: {result[0]}, Score: {result[1]}\n")
|
74 |
+
"""
|
75 |
return transcription
|
76 |
|
77 |
# Sentiment analysis function
|