Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# @Author : xuelun | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import Tensor | |
from typing import Type, Callable, Union, List, Optional | |
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=dilation, groups=groups, bias=False, dilation=dilation) | |
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: | |
"""1x1 convolution""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
class BasicBlock(nn.Module): | |
expansion: int = 1 | |
def __init__( | |
self, | |
inplanes: int, | |
planes: int, | |
stride: int = 1, | |
downsample: Optional[nn.Module] = None, | |
groups: int = 1, | |
base_width: int = 64, | |
dilation: int = 1, | |
norm_layer: Optional[Callable[..., nn.Module]] = None | |
) -> None: | |
super(BasicBlock, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
if groups != 1 or base_width != 64: | |
raise ValueError('BasicBlock only supports groups=1 and base_width=64') | |
if dilation > 1: | |
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") | |
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = norm_layer(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = norm_layer(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x: Tensor) -> Tensor: | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) | |
# while original implementation places the stride at the first 1x1 convolution(self.conv1) | |
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. | |
# This variant is also known as ResNet V1.5 and improves accuracy according to | |
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. | |
expansion: int = 4 | |
def __init__( | |
self, | |
inplanes: int, | |
planes: int, | |
stride: int = 1, | |
downsample: Optional[nn.Module] = None, | |
groups: int = 1, | |
base_width: int = 64, | |
dilation: int = 1, | |
norm_layer: Optional[Callable[..., nn.Module]] = None | |
) -> None: | |
super(Bottleneck, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
width = int(planes * (base_width / 64.)) * groups | |
# Both self.conv2 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv1x1(inplanes, width) | |
self.bn1 = norm_layer(width) | |
self.conv2 = conv3x3(width, width, stride, groups, dilation) | |
self.bn2 = norm_layer(width) | |
self.conv3 = conv1x1(width, planes * self.expansion) | |
self.bn3 = norm_layer(planes * self.expansion) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x: Tensor) -> Tensor: | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__( | |
self, | |
block: Type[Union[BasicBlock, Bottleneck]], | |
layers: List[int], | |
num_classes: int = 1000, | |
zero_init_residual: bool = False, | |
groups: int = 1, | |
width_per_group: int = 64, | |
replace_stride_with_dilation: Optional[List[bool]] = None, | |
norm_layer: Optional[Callable[..., nn.Module]] = None | |
) -> None: | |
super(ResNet, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
self._norm_layer = norm_layer | |
self.inplanes = 64 | |
self.dilation = 1 | |
if replace_stride_with_dilation is None: | |
# each element in the tuple indicates if we should replace | |
# the 2x2 stride with a dilated convolution instead | |
replace_stride_with_dilation = [False, False, False] | |
if len(replace_stride_with_dilation) != 3: | |
raise ValueError("replace_stride_with_dilation should be None " | |
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) | |
self.groups = groups | |
self.base_width = width_per_group | |
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, | |
bias=False) | |
self.bn1 = norm_layer(self.inplanes) | |
self.relu = nn.ReLU(inplace=True) | |
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, | |
dilate=replace_stride_with_dilation[0]) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, | |
dilate=replace_stride_with_dilation[1]) | |
# self.layer4 = self._make_layer(block, 512, layers[3], stride=2, | |
# dilate=replace_stride_with_dilation[2]) | |
# self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
# self.fc = nn.Linear(512 * block.expansion, num_classes) | |
# | |
# for m in self.modules(): | |
# if isinstance(m, nn.Conv2d): | |
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
# elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | |
# nn.init.constant_(m.weight, 1) | |
# nn.init.constant_(m.bias, 0) | |
# | |
# # Zero-initialize the last BN in each residual branch, | |
# # so that the residual branch starts with zeros, and each residual block behaves like an identity. | |
# # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | |
# if zero_init_residual: | |
# for m in self.modules(): | |
# if isinstance(m, Bottleneck): | |
# nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] | |
# elif isinstance(m, BasicBlock): | |
# nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] | |
def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, | |
stride: int = 1, dilate: bool = False) -> nn.Sequential: | |
norm_layer = self._norm_layer | |
downsample = None | |
previous_dilation = self.dilation | |
if dilate: | |
self.dilation *= stride | |
stride = 1 | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
conv1x1(self.inplanes, planes * block.expansion, stride), | |
norm_layer(planes * block.expansion), | |
) | |
layers = [block(self.inplanes, planes, stride, downsample, self.groups, | |
self.base_width, previous_dilation, norm_layer)] | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append(block(self.inplanes, planes, groups=self.groups, | |
base_width=self.base_width, dilation=self.dilation, | |
norm_layer=norm_layer)) | |
return nn.Sequential(*layers) | |
def _forward_impl(self, x: Tensor) -> Tensor: | |
# See note [TorchScript super()] | |
# x = self.conv1(x) # (2, 64, 320, 320) | |
# x = self.bn1(x) # (2, 64, 320, 320) | |
# x1 = self.relu(x) # (2, 64, 320, 320) | |
# x2 = self.maxpool(x1) # (2, 64, 160, 160) | |
# x2 = self.layer1(x1) # (2, 64, 160, 160) | |
# x3 = self.layer2(x2) # (2, 128, 80, 80) | |
# x4 = self.layer3(x3) # (2, 256, 40, 40) | |
# x = self.layer4(x) # (2, 512, 20, 20) | |
# x = self.avgpool(x) # (2, 512, 1, 1) | |
# x = torch.flatten(x, 1) # (2, 512) | |
# x = self.fc(x) # (2, 1000) | |
x0 = self.relu(self.bn1(self.conv1(x))) | |
x1 = self.layer1(x0) # 1/2 | |
x2 = self.layer2(x1) # 1/4 | |
x3 = self.layer3(x2) # 1/8 | |
return x1, x2, x3 | |
def forward(self, x: Tensor) -> Tensor: | |
return self._forward_impl(x) | |
def load_state_dict(self, state_dict, *args, **kwargs): | |
for k in list(state_dict.keys()): | |
if k.startswith('layer4.'): state_dict.pop(k) | |
if k.startswith('fc.'): state_dict.pop(k) | |
return super().load_state_dict(state_dict, *args, **kwargs) | |
class ResNetFPN_8_2(nn.Module): | |
""" | |
ResNet+FPN, output resolution are 1/8 and 1/2. | |
Each block has 2 layers. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
# Config | |
block = BasicBlock | |
# initial_dim = config['initial_dim'] | |
block_dims = config['block_dims'] | |
# Class Variable | |
# self.in_planes = initial_dim | |
# Networks | |
# self.conv1 = nn.Conv2d(1, initial_dim, kernel_size=7, stride=2, padding=3, bias=False) | |
# self.bn1 = nn.BatchNorm2d(initial_dim) | |
# self.relu = nn.ReLU(inplace=True) | |
# self.layer1 = self._make_layer(block, block_dims[0], stride=1) # 1/2 | |
# self.layer2 = self._make_layer(block, block_dims[1], stride=2) # 1/4 | |
# self.layer3 = self._make_layer(block, block_dims[2], stride=2) # 1/8 | |
self.encode = ResNet(Bottleneck, [3, 4, 6, 3]) # resnet50 | |
# 3. FPN upsample | |
self.layer3_outconv = conv1x1(block_dims[5], block_dims[3]) | |
self.layer2_outconv = conv1x1(block_dims[4], block_dims[3]) | |
self.layer2_outconv2 = nn.Sequential( | |
conv3x3(block_dims[3], block_dims[3]), | |
nn.BatchNorm2d(block_dims[3]), | |
nn.LeakyReLU(), | |
conv3x3(block_dims[3], block_dims[2]), | |
) | |
self.layer1_outconv = conv1x1(block_dims[3], block_dims[2]) | |
self.layer1_outconv2 = nn.Sequential( | |
conv3x3(block_dims[2], block_dims[2]), | |
nn.BatchNorm2d(block_dims[2]), | |
nn.LeakyReLU(), | |
conv3x3(block_dims[2], block_dims[1]), | |
) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
def _make_layer(self, block, dim, stride=1): | |
layer1 = block(self.in_planes, dim, stride=stride) | |
layer2 = block(dim, dim, stride=1) | |
layers = (layer1, layer2) | |
self.in_planes = dim | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
# ResNet Backbone | |
# x0 = self.relu(self.bn1(self.conv1(x))) | |
# x1 = self.layer1(x0) # 1/2 | |
# x2 = self.layer2(x1) # 1/4 | |
# x3 = self.layer3(x2) # 1/8 | |
# x1: (2, 64, 320, 320) | |
# x2: (2, 128, 160, 160) | |
# x3: (2, 256, 80, 80) | |
x1, x2, x3 = self.encode(x) | |
# FPN | |
x3_out = self.layer3_outconv(x3) # (2, 256, 80, 80) | |
x3_out_2x = F.interpolate(x3_out, scale_factor=2., mode='bilinear', align_corners=True) # (2, 256, 160, 160) | |
x2_out = self.layer2_outconv(x2) # (2, 256, 160, 160) | |
x2_out = self.layer2_outconv2(x2_out+x3_out_2x) # (2, 196, 160, 160) | |
x2_out_2x = F.interpolate(x2_out, scale_factor=2., mode='bilinear', align_corners=True) # (2, 196, 320, 320) | |
x1_out = self.layer1_outconv(x1) # (2, 196, 320, 320) | |
x1_out = self.layer1_outconv2(x1_out+x2_out_2x) | |
return [x3_out, x1_out] | |
if __name__ == '__main__': | |
# Original form | |
# config = dict(initial_dim=128, block_dims=[128, 196, 256]) | |
# model = ResNetFPN_8_2(config) | |
# # output (list): | |
# # 0: (2, 256, 80, 80) | |
# # 1: (2, 128, 320, 320) | |
# output = model(torch.randn(2, 1, 640, 640)) | |
# model = ResNet(BasicBlock, [2, 2, 2, 2]) | |
# # weights = torch.load('resnet18(5c106cde).ckpt', map_location='cpu') | |
# # model.load_state_dict(weights) | |
# output = model(torch.randn(2, 3, 640, 640)) | |
config = dict(initial_dim=128, block_dims=[64, 128, 196, 256]) | |
model = ResNetFPN_8_2(config) | |
# output (list): | |
# 0: (2, 256, 80, 80) | |
# 1: (2, 128, 320, 320) | |
output = model(torch.randn(2, 3, 640, 640)) | |