Realcat
add: ray dashboard port and serve port
aebdae7
# server.py
import warnings
from pathlib import Path
from typing import Any, Dict, Optional, Union
import yaml
import ray
from ray import serve
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import JSONResponse
from PIL import Image
from api import ImagesInput, to_base64_nparray
from hloc import DEVICE, extract_features, logger, match_dense, match_features
from hloc.utils.viz import add_text, plot_keypoints
from ui import get_version
from ui.utils import filter_matches, get_feature_model, get_model
from ui.viz import display_matches, fig2im, plot_images
warnings.simplefilter("ignore")
app = FastAPI()
if ray.is_initialized():
ray.shutdown()
ray.init(
dashboard_port=8265,
ignore_reinit_error=True,
)
serve.start(
http_options={"host": "0.0.0.0", "port": 8000},
)
class ImageMatchingAPI(torch.nn.Module):
default_conf = {
"ransac": {
"enable": True,
"estimator": "poselib",
"geometry": "homography",
"method": "RANSAC",
"reproj_threshold": 3,
"confidence": 0.9999,
"max_iter": 10000,
},
}
def __init__(
self,
conf: dict = {},
device: str = "cpu",
detect_threshold: float = 0.015,
max_keypoints: int = 1024,
match_threshold: float = 0.2,
) -> None:
"""
Initializes an instance of the ImageMatchingAPI class.
Args:
conf (dict): A dictionary containing the configuration parameters.
device (str, optional): The device to use for computation. Defaults to "cpu".
detect_threshold (float, optional): The threshold for detecting keypoints. Defaults to 0.015.
max_keypoints (int, optional): The maximum number of keypoints to extract. Defaults to 1024.
match_threshold (float, optional): The threshold for matching keypoints. Defaults to 0.2.
Returns:
None
"""
super().__init__()
self.device = device
self.conf = {**self.default_conf, **conf}
self._updata_config(detect_threshold, max_keypoints, match_threshold)
self._init_models()
if device == "cuda":
memory_allocated = torch.cuda.memory_allocated(device)
memory_reserved = torch.cuda.memory_reserved(device)
logger.info(
f"GPU memory allocated: {memory_allocated / 1024**2:.3f} MB"
)
logger.info(
f"GPU memory reserved: {memory_reserved / 1024**2:.3f} MB"
)
self.pred = None
def parse_match_config(self, conf):
if conf["dense"]:
return {
**conf,
"matcher": match_dense.confs.get(
conf["matcher"]["model"]["name"]
),
"dense": True,
}
else:
return {
**conf,
"feature": extract_features.confs.get(
conf["feature"]["model"]["name"]
),
"matcher": match_features.confs.get(
conf["matcher"]["model"]["name"]
),
"dense": False,
}
def _updata_config(
self,
detect_threshold: float = 0.015,
max_keypoints: int = 1024,
match_threshold: float = 0.2,
):
self.dense = self.conf["dense"]
if self.conf["dense"]:
try:
self.conf["matcher"]["model"][
"match_threshold"
] = match_threshold
except TypeError as e:
logger.error(e)
else:
self.conf["feature"]["model"]["max_keypoints"] = max_keypoints
self.conf["feature"]["model"][
"keypoint_threshold"
] = detect_threshold
self.extract_conf = self.conf["feature"]
self.match_conf = self.conf["matcher"]
def _init_models(self):
# initialize matcher
self.matcher = get_model(self.match_conf)
# initialize extractor
if self.dense:
self.extractor = None
else:
self.extractor = get_feature_model(self.conf["feature"])
def _forward(self, img0, img1):
if self.dense:
pred = match_dense.match_images(
self.matcher,
img0,
img1,
self.match_conf["preprocessing"],
device=self.device,
)
last_fixed = "{}".format( # noqa: F841
self.match_conf["model"]["name"]
)
else:
pred0 = extract_features.extract(
self.extractor, img0, self.extract_conf["preprocessing"]
)
pred1 = extract_features.extract(
self.extractor, img1, self.extract_conf["preprocessing"]
)
pred = match_features.match_images(self.matcher, pred0, pred1)
return pred
def _convert_pred(self, pred):
ret = {
k: v.cpu().detach()[0].numpy() if isinstance(v, torch.Tensor) else v
for k, v in pred.items()
}
ret = {
k: v[0].cpu().detach().numpy() if isinstance(v, list) else v
for k, v in ret.items()
}
return ret
@torch.inference_mode()
def extract(self, img0: np.ndarray, **kwargs) -> Dict[str, np.ndarray]:
"""Extract features from a single image.
Args:
img0 (np.ndarray): image
Returns:
Dict[str, np.ndarray]: feature dict
"""
# setting prams
self.extractor.conf["max_keypoints"] = kwargs.get("max_keypoints", 512)
self.extractor.conf["keypoint_threshold"] = kwargs.get(
"keypoint_threshold", 0.0
)
pred = extract_features.extract(
self.extractor, img0, self.extract_conf["preprocessing"]
)
pred = self._convert_pred(pred)
# back to origin scale
s0 = pred["original_size"] / pred["size"]
pred["keypoints_orig"] = (
match_features.scale_keypoints(pred["keypoints"] + 0.5, s0) - 0.5
)
# TODO: rotate back
binarize = kwargs.get("binarize", False)
if binarize:
assert "descriptors" in pred
pred["descriptors"] = (pred["descriptors"] > 0).astype(np.uint8)
pred["descriptors"] = pred["descriptors"].T # N x DIM
return pred
@torch.inference_mode()
def forward(
self,
img0: np.ndarray,
img1: np.ndarray,
) -> Dict[str, np.ndarray]:
"""
Forward pass of the image matching API.
Args:
img0: A 3D NumPy array of shape (H, W, C) representing the first image.
Values are in the range [0, 1] and are in RGB mode.
img1: A 3D NumPy array of shape (H, W, C) representing the second image.
Values are in the range [0, 1] and are in RGB mode.
Returns:
A dictionary containing the following keys:
- image0_orig: The original image 0.
- image1_orig: The original image 1.
- keypoints0_orig: The keypoints detected in image 0.
- keypoints1_orig: The keypoints detected in image 1.
- mkeypoints0_orig: The raw matches between image 0 and image 1.
- mkeypoints1_orig: The raw matches between image 1 and image 0.
- mmkeypoints0_orig: The RANSAC inliers in image 0.
- mmkeypoints1_orig: The RANSAC inliers in image 1.
- mconf: The confidence scores for the raw matches.
- mmconf: The confidence scores for the RANSAC inliers.
"""
# Take as input a pair of images (not a batch)
assert isinstance(img0, np.ndarray)
assert isinstance(img1, np.ndarray)
self.pred = self._forward(img0, img1)
if self.conf["ransac"]["enable"]:
self.pred = self._geometry_check(self.pred)
return self.pred
def _geometry_check(
self,
pred: Dict[str, Any],
) -> Dict[str, Any]:
"""
Filter matches using RANSAC. If keypoints are available, filter by keypoints.
If lines are available, filter by lines. If both keypoints and lines are
available, filter by keypoints.
Args:
pred (Dict[str, Any]): dict of matches, including original keypoints.
See :func:`filter_matches` for the expected keys.
Returns:
Dict[str, Any]: filtered matches
"""
pred = filter_matches(
pred,
ransac_method=self.conf["ransac"]["method"],
ransac_reproj_threshold=self.conf["ransac"]["reproj_threshold"],
ransac_confidence=self.conf["ransac"]["confidence"],
ransac_max_iter=self.conf["ransac"]["max_iter"],
)
return pred
def visualize(
self,
log_path: Optional[Path] = None,
) -> None:
"""
Visualize the matches.
Args:
log_path (Path, optional): The directory to save the images. Defaults to None.
Returns:
None
"""
if self.conf["dense"]:
postfix = str(self.conf["matcher"]["model"]["name"])
else:
postfix = "{}_{}".format(
str(self.conf["feature"]["model"]["name"]),
str(self.conf["matcher"]["model"]["name"]),
)
titles = [
"Image 0 - Keypoints",
"Image 1 - Keypoints",
]
pred: Dict[str, Any] = self.pred
image0: np.ndarray = pred["image0_orig"]
image1: np.ndarray = pred["image1_orig"]
output_keypoints: np.ndarray = plot_images(
[image0, image1], titles=titles, dpi=300
)
if (
"keypoints0_orig" in pred.keys()
and "keypoints1_orig" in pred.keys()
):
plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]])
text: str = (
f"# keypoints0: {len(pred['keypoints0_orig'])} \n"
+ f"# keypoints1: {len(pred['keypoints1_orig'])}"
)
add_text(0, text, fs=15)
output_keypoints = fig2im(output_keypoints)
# plot images with raw matches
titles = [
"Image 0 - Raw matched keypoints",
"Image 1 - Raw matched keypoints",
]
output_matches_raw, num_matches_raw = display_matches(
pred, titles=titles, tag="KPTS_RAW"
)
# plot images with ransac matches
titles = [
"Image 0 - Ransac matched keypoints",
"Image 1 - Ransac matched keypoints",
]
output_matches_ransac, num_matches_ransac = display_matches(
pred, titles=titles, tag="KPTS_RANSAC"
)
if log_path is not None:
img_keypoints_path: Path = log_path / f"img_keypoints_{postfix}.png"
img_matches_raw_path: Path = (
log_path / f"img_matches_raw_{postfix}.png"
)
img_matches_ransac_path: Path = (
log_path / f"img_matches_ransac_{postfix}.png"
)
cv2.imwrite(
str(img_keypoints_path),
output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
)
cv2.imwrite(
str(img_matches_raw_path),
output_matches_raw[:, :, ::-1].copy(), # RGB -> BGR
)
cv2.imwrite(
str(img_matches_ransac_path),
output_matches_ransac[:, :, ::-1].copy(), # RGB -> BGR
)
plt.close("all")
@serve.deployment(
num_replicas=4,
ray_actor_options={"num_cpus": 2, "num_gpus": 1}
)
@serve.ingress(app)
class ImageMatchingService:
def __init__(self, conf: dict, device: str):
self.conf = conf
self.api = ImageMatchingAPI(conf=conf, device=device)
@app.get("/")
def root(self):
return "Hello, world!"
@app.get("/version")
async def version(self):
return {"version": get_version()}
@app.post("/v1/match")
async def match(
self, image0: UploadFile = File(...), image1: UploadFile = File(...)
):
"""
Handle the image matching request and return the processed result.
Args:
image0 (UploadFile): The first image file for matching.
image1 (UploadFile): The second image file for matching.
Returns:
JSONResponse: A JSON response containing the filtered match results
or an error message in case of failure.
"""
try:
# Load the images from the uploaded files
image0_array = self.load_image(image0)
image1_array = self.load_image(image1)
# Perform image matching using the API
output = self.api(image0_array, image1_array)
# Keys to skip in the output
skip_keys = ["image0_orig", "image1_orig"]
# Postprocess the output to filter unwanted data
pred = self.postprocess(output, skip_keys)
# Return the filtered prediction as a JSON response
return JSONResponse(content=pred)
except Exception as e:
# Return an error message with status code 500 in case of exception
return JSONResponse(content={"error": str(e)}, status_code=500)
@app.post("/v1/extract")
async def extract(self, input_info: ImagesInput):
"""
Extract keypoints and descriptors from images.
Args:
input_info: An object containing the image data and options.
Returns:
A list of dictionaries containing the keypoints and descriptors.
"""
try:
preds = []
for i, input_image in enumerate(input_info.data):
# Load the image from the input data
image_array = to_base64_nparray(input_image)
# Extract keypoints and descriptors
output = self.api.extract(
image_array,
max_keypoints=input_info.max_keypoints[i],
binarize=input_info.binarize,
)
# Do not return the original image and image_orig
# skip_keys = ["image", "image_orig"]
skip_keys = []
# Postprocess the output
pred = self.postprocess(output, skip_keys)
preds.append(pred)
# Return the list of extracted features
return JSONResponse(content=preds)
except Exception as e:
# Return an error message if an exception occurs
return JSONResponse(content={"error": str(e)}, status_code=500)
def load_image(self, file_path: Union[str, UploadFile]) -> np.ndarray:
"""
Reads an image from a file path or an UploadFile object.
Args:
file_path: A file path or an UploadFile object.
Returns:
A numpy array representing the image.
"""
if isinstance(file_path, str):
file_path = Path(file_path).resolve(strict=False)
else:
file_path = file_path.file
with Image.open(file_path) as img:
image_array = np.array(img)
return image_array
def postprocess(
self, output: dict, skip_keys: list, binarize: bool = True
) -> dict:
pred = {}
for key, value in output.items():
if key in skip_keys:
continue
if isinstance(value, np.ndarray):
pred[key] = value.tolist()
return pred
def run(self, host: str = "0.0.0.0", port: int = 8001):
import uvicorn
uvicorn.run(app, host=host, port=port)
def read_config(config_path: Path) -> dict:
with open(config_path, "r") as f:
conf = yaml.safe_load(f)
return conf
# api server
conf = read_config(Path(__file__).parent / "config/api.yaml")
service = ImageMatchingService.bind(conf=conf["api"], device=DEVICE)
# handle = serve.run(service, route_prefix="/")
# serve run api.server_ray:service
# build to generate config file
# serve build api.server_ray:service -o api/config/ray.yaml
# serve run api/config/ray.yaml