Spaces:
Running
Running
import argparse | |
from pathlib import Path | |
from ... import ( | |
extract_features, | |
localize_sfm, | |
logger, | |
match_features, | |
pairs_from_covisibility, | |
pairs_from_retrieval, | |
triangulation, | |
) | |
TEST_SLICES = [2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 19, 20, 21] | |
def generate_query_list(dataset, path, slice_): | |
cameras = {} | |
with open(dataset / "intrinsics.txt", "r") as f: | |
for line in f.readlines(): | |
if line[0] == "#" or line == "\n": | |
continue | |
data = line.split() | |
cameras[data[0]] = data[1:] | |
assert len(cameras) == 2 | |
queries = dataset / f"{slice_}/test-images-{slice_}.txt" | |
with open(queries, "r") as f: | |
queries = [q.rstrip("\n") for q in f.readlines()] | |
out = [[q] + cameras[q.split("_")[2]] for q in queries] | |
with open(path, "w") as f: | |
f.write("\n".join(map(" ".join, out))) | |
def run_slice(slice_, root, outputs, num_covis, num_loc): | |
dataset = root / slice_ | |
ref_images = dataset / "database" | |
query_images = dataset / "query" | |
sift_sfm = dataset / "sparse" | |
outputs = outputs / slice_ | |
outputs.mkdir(exist_ok=True, parents=True) | |
query_list = dataset / "queries_with_intrinsics.txt" | |
sfm_pairs = outputs / f"pairs-db-covis{num_covis}.txt" | |
loc_pairs = outputs / f"pairs-query-netvlad{num_loc}.txt" | |
ref_sfm = outputs / "sfm_superpoint+superglue" | |
results = outputs / f"CMU_hloc_superpoint+superglue_netvlad{num_loc}.txt" | |
# pick one of the configurations for extraction and matching | |
retrieval_conf = extract_features.confs["netvlad"] | |
feature_conf = extract_features.confs["superpoint_aachen"] | |
matcher_conf = match_features.confs["superglue"] | |
pairs_from_covisibility.main(sift_sfm, sfm_pairs, num_matched=num_covis) | |
features = extract_features.main(feature_conf, ref_images, outputs, as_half=True) | |
sfm_matches = match_features.main( | |
matcher_conf, sfm_pairs, feature_conf["output"], outputs | |
) | |
triangulation.main(ref_sfm, sift_sfm, ref_images, sfm_pairs, features, sfm_matches) | |
generate_query_list(root, query_list, slice_) | |
global_descriptors = extract_features.main(retrieval_conf, ref_images, outputs) | |
global_descriptors = extract_features.main(retrieval_conf, query_images, outputs) | |
pairs_from_retrieval.main( | |
global_descriptors, loc_pairs, num_loc, query_list=query_list, db_model=ref_sfm | |
) | |
features = extract_features.main(feature_conf, query_images, outputs, as_half=True) | |
loc_matches = match_features.main( | |
matcher_conf, loc_pairs, feature_conf["output"], outputs | |
) | |
localize_sfm.main( | |
ref_sfm, | |
dataset / "queries/*_time_queries_with_intrinsics.txt", | |
loc_pairs, | |
features, | |
loc_matches, | |
results, | |
) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--slices", | |
type=str, | |
default="*", | |
help="a single number, an interval (e.g. 2-6), " | |
"or a Python-style list or int (e.g. [2, 3, 4]", | |
) | |
parser.add_argument( | |
"--dataset", | |
type=Path, | |
default="datasets/cmu_extended", | |
help="Path to the dataset, default: %(default)s", | |
) | |
parser.add_argument( | |
"--outputs", | |
type=Path, | |
default="outputs/aachen_extended", | |
help="Path to the output directory, default: %(default)s", | |
) | |
parser.add_argument( | |
"--num_covis", | |
type=int, | |
default=20, | |
help="Number of image pairs for SfM, default: %(default)s", | |
) | |
parser.add_argument( | |
"--num_loc", | |
type=int, | |
default=10, | |
help="Number of image pairs for loc, default: %(default)s", | |
) | |
args = parser.parse_args() | |
if args.slice == "*": | |
slices = TEST_SLICES | |
if "-" in args.slices: | |
min_, max_ = args.slices.split("-") | |
slices = list(range(int(min_), int(max_) + 1)) | |
else: | |
slices = eval(args.slices) | |
if isinstance(slices, int): | |
slices = [slices] | |
for slice_ in slices: | |
logger.info("Working on slice %s.", slice_) | |
run_slice( | |
f"slice{slice_}", args.dataset, args.outputs, args.num_covis, args.num_loc | |
) | |