Vincentqyw
update: features and matchers
437b5f6
raw
history blame
4.05 kB
import argparse
import os
import numpy as np
import h5py
import cv2
from numpy.core.numeric import indices
import pyxis as px
from tqdm import trange
import sys
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.insert(0, ROOT_DIR)
from utils import evaluation_utils,train_utils
parser = argparse.ArgumentParser(description='checking training data.')
parser.add_argument('--meta_dir', type=str, default='dataset/valid')
parser.add_argument('--dataset_dir', type=str, default='dataset')
parser.add_argument('--desc_dir', type=str, default='desc')
parser.add_argument('--raw_dir', type=str, default='raw_data')
parser.add_argument('--desc_suffix', type=str, default='_root_1000.hdf5')
parser.add_argument('--vis_folder',type=str,default=None)
args=parser.parse_args()
if __name__=='__main__':
if args.vis_folder is not None and not os.path.exists(args.vis_folder):
os.mkdir(args.vis_folder)
pair_num_list=np.loadtxt(os.path.join(args.meta_dir,'pair_num.txt'),dtype=str)
pair_seq_list,accu_pair_list=train_utils.parse_pair_seq(pair_num_list)
total_pair=int(pair_num_list[0,1])
total_inlier_rate,total_corr_num,total_incorr_num=[],[],[]
pair_num_list=pair_num_list[1:]
for index in trange(total_pair):
seq=pair_seq_list[index]
index_within_seq=index-accu_pair_list[seq]
with h5py.File(os.path.join(args.dataset_dir,seq,'info.h5py'),'r') as data:
corr=data['corr'][str(index_within_seq)][()]
corr1,corr2=corr[:,0],corr[:,1]
incorr1,incorr2=data['incorr1'][str(index_within_seq)][()],data['incorr2'][str(index_within_seq)][()]
img_path1,img_path2=data['img_path1'][str(index_within_seq)][()][0].decode(),data['img_path2'][str(index_within_seq)][()][0].decode()
img_name1,img_name2=img_path1.split('/')[-1],img_path2.split('/')[-1]
fea_path1,fea_path2=os.path.join(args.desc_dir,seq,img_name1+args.desc_suffix),os.path.join(args.desc_dir,seq,img_name2+args.desc_suffix)
with h5py.File(fea_path1,'r') as fea1, h5py.File(fea_path2,'r') as fea2:
desc1,kpt1=fea1['descriptors'][()],fea1['keypoints'][()][:,:2]
desc2,kpt2=fea2['descriptors'][()],fea2['keypoints'][()][:,:2]
sim_mat=desc1@desc2.T
nn_index1,nn_index2=np.argmax(sim_mat,axis=1),np.argmax(sim_mat,axis=0)
mask_mutual=(nn_index2[nn_index1]==np.arange(len(nn_index1)))[corr1]
mask_inlier=nn_index1[corr1]==corr2
mask_nn_correct=np.logical_and(mask_mutual,mask_inlier)
#statistics
total_inlier_rate.append(mask_nn_correct.mean())
total_corr_num.append(len(corr1))
total_incorr_num.append((len(incorr1)+len(incorr2))/2)
#dump visualization
if args.vis_folder is not None:
#draw corr
img1,img2=cv2.imread(os.path.join(args.raw_dir,img_path1)),cv2.imread(os.path.join(args.raw_dir,img_path2))
corr1_pos,corr2_pos=np.take_along_axis(kpt1,corr1[:,np.newaxis],axis=0),np.take_along_axis(kpt2,corr2[:,np.newaxis],axis=0)
dis_corr=evaluation_utils.draw_match(img1,img2,corr1_pos,corr2_pos)
cv2.imwrite(os.path.join(args.vis_folder,str(index)+'.png'),dis_corr)
#draw incorr
incorr1_pos,incorr2_pos=np.take_along_axis(kpt1,incorr1[:,np.newaxis],axis=0),np.take_along_axis(kpt2,incorr2[:,np.newaxis],axis=0)
dis_incorr1,dis_incorr2=evaluation_utils.draw_points(img1,incorr1_pos),evaluation_utils.draw_points(img2,incorr2_pos)
cv2.imwrite(os.path.join(args.vis_folder,str(index)+'_incorr1.png'),dis_incorr1)
cv2.imwrite(os.path.join(args.vis_folder,str(index)+'_incorr2.png'),dis_incorr2)
print('NN matching accuracy: ',np.asarray(total_inlier_rate).mean())
print('mean corr number: ',np.asarray(total_corr_num).mean())
print('mean incorr number: ',np.asarray(total_incorr_num).mean())