Realcat
fix: eloftr
63f3cf2
raw
history blame
10.8 kB
# code is from hloc https://github.com/cvg/Hierarchical-Localization/blob/master/hloc/triangulation.py
import argparse
import contextlib
import io
import sys
from pathlib import Path
from typing import Any, Dict, List, Optional
import numpy as np
import pycolmap
from tqdm import tqdm
from colmap_utils.database import COLMAPDatabase
from colmap_utils.geometry import compute_epipolar_errors
from colmap_utils.io import get_keypoints, get_matches
from colmap_utils.parsers import parse_retrieval
import logging
class OutputCapture:
def __init__(self, verbose: bool):
self.verbose = verbose
def __enter__(self):
if not self.verbose:
self.capture = contextlib.redirect_stdout(io.StringIO())
self.out = self.capture.__enter__()
def __exit__(self, exc_type, *args):
if not self.verbose:
self.capture.__exit__(exc_type, *args)
if exc_type is not None:
# logger.error("Failed with output:\n%s", self.out.getvalue())
logging.error("Failed with output:\n%s", self.out.getvalue())
sys.stdout.flush()
def create_db_from_model(
reconstruction: pycolmap.Reconstruction, database_path: Path
) -> Dict[str, int]:
if database_path.exists():
# logger.warning("The database already exists, deleting it.")
logging.warning("The database already exists, deleting it.")
database_path.unlink()
db = COLMAPDatabase.connect(database_path)
db.create_tables()
for i, camera in reconstruction.cameras.items():
db.add_camera(
camera.model.value,
camera.width,
camera.height,
camera.params,
camera_id=i,
prior_focal_length=True,
)
for i, image in reconstruction.images.items():
db.add_image(image.name, image.camera_id, image_id=i)
db.commit()
db.close()
return {image.name: i for i, image in reconstruction.images.items()}
def import_features(
image_ids: Dict[str, int], database_path: Path, features_path: Path
):
# logger.info("Importing features into the database...")
logging.info("Importing features into the database...")
db = COLMAPDatabase.connect(database_path)
for image_name, image_id in tqdm(image_ids.items()):
keypoints = get_keypoints(features_path, image_name)
keypoints += 0.5 # COLMAP origin
db.add_keypoints(image_id, keypoints)
db.commit()
db.close()
def import_matches(
image_ids: Dict[str, int],
database_path: Path,
pairs_path: Path,
matches_path: Path,
min_match_score: Optional[float] = None,
skip_geometric_verification: bool = False,
):
# logger.info("Importing matches into the database...")
logging.info("Importing matches into the database...")
with open(str(pairs_path), "r") as f:
pairs = [p.split() for p in f.readlines()]
db = COLMAPDatabase.connect(database_path)
matched = set()
for name0, name1 in tqdm(pairs):
id0, id1 = image_ids[name0], image_ids[name1]
if len({(id0, id1), (id1, id0)} & matched) > 0:
continue
matches, scores = get_matches(matches_path, name0, name1)
if min_match_score:
matches = matches[scores > min_match_score]
db.add_matches(id0, id1, matches)
matched |= {(id0, id1), (id1, id0)}
if skip_geometric_verification:
db.add_two_view_geometry(id0, id1, matches)
db.commit()
db.close()
def estimation_and_geometric_verification(
database_path: Path, pairs_path: Path, verbose: bool = False
):
# logger.info("Performing geometric verification of the matches...")
logging.info("Performing geometric verification of the matches...")
with OutputCapture(verbose):
with pycolmap.ostream():
pycolmap.verify_matches(
database_path,
pairs_path,
options=dict(ransac=dict(max_num_trials=20000, min_inlier_ratio=0.1)),
)
def geometric_verification(
image_ids: Dict[str, int],
reference: pycolmap.Reconstruction,
database_path: Path,
features_path: Path,
pairs_path: Path,
matches_path: Path,
max_error: float = 4.0,
):
# logger.info("Performing geometric verification of the matches...")
logging.info("Performing geometric verification of the matches...")
pairs = parse_retrieval(pairs_path)
db = COLMAPDatabase.connect(database_path)
inlier_ratios = []
matched = set()
for name0 in tqdm(pairs):
id0 = image_ids[name0]
image0 = reference.images[id0]
cam0 = reference.cameras[image0.camera_id]
kps0, noise0 = get_keypoints(features_path, name0, return_uncertainty=True)
noise0 = 1.0 if noise0 is None else noise0
if len(kps0) > 0:
kps0 = np.stack(cam0.cam_from_img(kps0))
else:
kps0 = np.zeros((0, 2))
for name1 in pairs[name0]:
id1 = image_ids[name1]
image1 = reference.images[id1]
cam1 = reference.cameras[image1.camera_id]
kps1, noise1 = get_keypoints(features_path, name1, return_uncertainty=True)
noise1 = 1.0 if noise1 is None else noise1
if len(kps1) > 0:
kps1 = np.stack(cam1.cam_from_img(kps1))
else:
kps1 = np.zeros((0, 2))
matches = get_matches(matches_path, name0, name1)[0]
if len({(id0, id1), (id1, id0)} & matched) > 0:
continue
matched |= {(id0, id1), (id1, id0)}
if matches.shape[0] == 0:
db.add_two_view_geometry(id0, id1, matches)
continue
cam1_from_cam0 = image1.cam_from_world * image0.cam_from_world.inverse()
errors0, errors1 = compute_epipolar_errors(
cam1_from_cam0, kps0[matches[:, 0]], kps1[matches[:, 1]]
)
valid_matches = np.logical_and(
errors0 <= cam0.cam_from_img_threshold(noise0 * max_error),
errors1 <= cam1.cam_from_img_threshold(noise1 * max_error),
)
# TODO: We could also add E to the database, but we need
# to reverse the transformations if id0 > id1 in utils/database.py.
db.add_two_view_geometry(id0, id1, matches[valid_matches, :])
inlier_ratios.append(np.mean(valid_matches))
# logger.info(
logging.info(
"mean/med/min/max valid matches %.2f/%.2f/%.2f/%.2f%%.",
np.mean(inlier_ratios) * 100,
np.median(inlier_ratios) * 100,
np.min(inlier_ratios) * 100,
np.max(inlier_ratios) * 100,
)
db.commit()
db.close()
def run_triangulation(
model_path: Path,
database_path: Path,
image_dir: Path,
reference_model: pycolmap.Reconstruction,
verbose: bool = False,
options: Optional[Dict[str, Any]] = None,
) -> pycolmap.Reconstruction:
model_path.mkdir(parents=True, exist_ok=True)
# logger.info("Running 3D triangulation...")
logging.info("Running 3D triangulation...")
if options is None:
options = {}
with OutputCapture(verbose):
with pycolmap.ostream():
reconstruction = pycolmap.triangulate_points(
reference_model, database_path, image_dir, model_path, options=options
)
return reconstruction
def main(
sfm_dir: Path,
reference_sfm_model: Path,
image_dir: Path,
pairs: Path,
features: Path,
matches: Path,
skip_geometric_verification: bool = False,
estimate_two_view_geometries: bool = False,
min_match_score: Optional[float] = None,
verbose: bool = False,
mapper_options: Optional[Dict[str, Any]] = None,
) -> pycolmap.Reconstruction:
assert reference_sfm_model.exists(), reference_sfm_model
assert features.exists(), features
assert pairs.exists(), pairs
assert matches.exists(), matches
sfm_dir.mkdir(parents=True, exist_ok=True)
database = sfm_dir / "database.db"
reference = pycolmap.Reconstruction(reference_sfm_model)
image_ids = create_db_from_model(reference, database)
import_features(image_ids, database, features)
import_matches(
image_ids,
database,
pairs,
matches,
min_match_score,
skip_geometric_verification,
)
if not skip_geometric_verification:
if estimate_two_view_geometries:
estimation_and_geometric_verification(database, pairs, verbose)
else:
geometric_verification(
image_ids, reference, database, features, pairs, matches
)
reconstruction = run_triangulation(
sfm_dir, database, image_dir, reference, verbose, mapper_options
)
# logger.info(
logging.info(
"Finished the triangulation with statistics:\n%s", reconstruction.summary()
)
stats = reconstruction.summary()
with open(sfm_dir / 'statics.txt', 'w') as f:
f.write(stats + '\n')
# logging.info(f'Statistics:\n{pprint.pformat(stats)}')
return reconstruction
def parse_option_args(args: List[str], default_options) -> Dict[str, Any]:
options = {}
for arg in args:
idx = arg.find("=")
if idx == -1:
raise ValueError("Options format: key1=value1 key2=value2 etc.")
key, value = arg[:idx], arg[idx + 1:]
if not hasattr(default_options, key):
raise ValueError(
f'Unknown option "{key}", allowed options and default values'
f" for {default_options.summary()}"
)
value = eval(value)
target_type = type(getattr(default_options, key))
if not isinstance(value, target_type):
raise ValueError(
f'Incorrect type for option "{key}":' f" {type(value)} vs {target_type}"
)
options[key] = value
return options
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--sfm_dir", type=Path, required=True)
parser.add_argument("--reference_sfm_model", type=Path, required=True)
parser.add_argument("--image_dir", type=Path, required=True)
parser.add_argument("--pairs", type=Path, required=True)
parser.add_argument("--features", type=Path, required=True)
parser.add_argument("--matches", type=Path, required=True)
parser.add_argument("--skip_geometric_verification", action="store_true")
parser.add_argument("--min_match_score", type=float)
parser.add_argument("--verbose", action="store_true")
args = parser.parse_args().__dict__
main(**args)