Spaces:
Running
Running
import math | |
import os | |
import numpy as np | |
from PIL import Image | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from dkm.utils import get_tuple_transform_ops | |
from einops import rearrange | |
from dkm.utils.local_correlation import local_correlation | |
class ConvRefiner(nn.Module): | |
def __init__( | |
self, | |
in_dim=6, | |
hidden_dim=16, | |
out_dim=2, | |
dw=False, | |
kernel_size=5, | |
hidden_blocks=3, | |
displacement_emb = None, | |
displacement_emb_dim = None, | |
local_corr_radius = None, | |
corr_in_other = None, | |
no_support_fm = False, | |
): | |
super().__init__() | |
self.block1 = self.create_block( | |
in_dim, hidden_dim, dw=dw, kernel_size=kernel_size | |
) | |
self.hidden_blocks = nn.Sequential( | |
*[ | |
self.create_block( | |
hidden_dim, | |
hidden_dim, | |
dw=dw, | |
kernel_size=kernel_size, | |
) | |
for hb in range(hidden_blocks) | |
] | |
) | |
self.out_conv = nn.Conv2d(hidden_dim, out_dim, 1, 1, 0) | |
if displacement_emb: | |
self.has_displacement_emb = True | |
self.disp_emb = nn.Conv2d(2,displacement_emb_dim,1,1,0) | |
else: | |
self.has_displacement_emb = False | |
self.local_corr_radius = local_corr_radius | |
self.corr_in_other = corr_in_other | |
self.no_support_fm = no_support_fm | |
def create_block( | |
self, | |
in_dim, | |
out_dim, | |
dw=False, | |
kernel_size=5, | |
): | |
num_groups = 1 if not dw else in_dim | |
if dw: | |
assert ( | |
out_dim % in_dim == 0 | |
), "outdim must be divisible by indim for depthwise" | |
conv1 = nn.Conv2d( | |
in_dim, | |
out_dim, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=kernel_size // 2, | |
groups=num_groups, | |
) | |
norm = nn.BatchNorm2d(out_dim) | |
relu = nn.ReLU(inplace=True) | |
conv2 = nn.Conv2d(out_dim, out_dim, 1, 1, 0) | |
return nn.Sequential(conv1, norm, relu, conv2) | |
def forward(self, x, y, flow): | |
"""Computes the relative refining displacement in pixels for a given image x,y and a coarse flow-field between them | |
Args: | |
x ([type]): [description] | |
y ([type]): [description] | |
flow ([type]): [description] | |
Returns: | |
[type]: [description] | |
""" | |
device = x.device | |
b,c,hs,ws = x.shape | |
with torch.no_grad(): | |
x_hat = F.grid_sample(y, flow.permute(0, 2, 3, 1), align_corners=False) | |
if self.has_displacement_emb: | |
query_coords = torch.meshgrid( | |
( | |
torch.linspace(-1 + 1 / hs, 1 - 1 / hs, hs, device=device), | |
torch.linspace(-1 + 1 / ws, 1 - 1 / ws, ws, device=device), | |
) | |
) | |
query_coords = torch.stack((query_coords[1], query_coords[0])) | |
query_coords = query_coords[None].expand(b, 2, hs, ws) | |
in_displacement = flow-query_coords | |
emb_in_displacement = self.disp_emb(in_displacement) | |
if self.local_corr_radius: | |
#TODO: should corr have gradient? | |
if self.corr_in_other: | |
# Corr in other means take a kxk grid around the predicted coordinate in other image | |
local_corr = local_correlation(x,y,local_radius=self.local_corr_radius,flow = flow) | |
else: | |
# Otherwise we use the warp to sample in the first image | |
# This is actually different operations, especially for large viewpoint changes | |
local_corr = local_correlation(x, x_hat, local_radius=self.local_corr_radius,) | |
if self.no_support_fm: | |
x_hat = torch.zeros_like(x) | |
d = torch.cat((x, x_hat, emb_in_displacement, local_corr), dim=1) | |
else: | |
d = torch.cat((x, x_hat, emb_in_displacement), dim=1) | |
else: | |
if self.no_support_fm: | |
x_hat = torch.zeros_like(x) | |
d = torch.cat((x, x_hat), dim=1) | |
d = self.block1(d) | |
d = self.hidden_blocks(d) | |
d = self.out_conv(d) | |
certainty, displacement = d[:, :-2], d[:, -2:] | |
return certainty, displacement | |
class CosKernel(nn.Module): # similar to softmax kernel | |
def __init__(self, T, learn_temperature=False): | |
super().__init__() | |
self.learn_temperature = learn_temperature | |
if self.learn_temperature: | |
self.T = nn.Parameter(torch.tensor(T)) | |
else: | |
self.T = T | |
def __call__(self, x, y, eps=1e-6): | |
c = torch.einsum("bnd,bmd->bnm", x, y) / ( | |
x.norm(dim=-1)[..., None] * y.norm(dim=-1)[:, None] + eps | |
) | |
if self.learn_temperature: | |
T = self.T.abs() + 0.01 | |
else: | |
T = torch.tensor(self.T, device=c.device) | |
K = ((c - 1.0) / T).exp() | |
return K | |
class CAB(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(CAB, self).__init__() | |
self.global_pooling = nn.AdaptiveAvgPool2d(1) | |
self.conv1 = nn.Conv2d( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.relu = nn.ReLU() | |
self.conv2 = nn.Conv2d( | |
out_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.sigmod = nn.Sigmoid() | |
def forward(self, x): | |
x1, x2 = x # high, low (old, new) | |
x = torch.cat([x1, x2], dim=1) | |
x = self.global_pooling(x) | |
x = self.conv1(x) | |
x = self.relu(x) | |
x = self.conv2(x) | |
x = self.sigmod(x) | |
x2 = x * x2 | |
res = x2 + x1 | |
return res | |
class RRB(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size=3): | |
super(RRB, self).__init__() | |
self.conv1 = nn.Conv2d( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.conv2 = nn.Conv2d( | |
out_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=kernel_size // 2, | |
) | |
self.relu = nn.ReLU() | |
self.bn = nn.BatchNorm2d(out_channels) | |
self.conv3 = nn.Conv2d( | |
out_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=kernel_size // 2, | |
) | |
def forward(self, x): | |
x = self.conv1(x) | |
res = self.conv2(x) | |
res = self.bn(res) | |
res = self.relu(res) | |
res = self.conv3(res) | |
return self.relu(x + res) | |
class DFN(nn.Module): | |
def __init__( | |
self, | |
internal_dim, | |
feat_input_modules, | |
pred_input_modules, | |
rrb_d_dict, | |
cab_dict, | |
rrb_u_dict, | |
use_global_context=False, | |
global_dim=None, | |
terminal_module=None, | |
upsample_mode="bilinear", | |
align_corners=False, | |
): | |
super().__init__() | |
if use_global_context: | |
assert ( | |
global_dim is not None | |
), "Global dim must be provided when using global context" | |
self.align_corners = align_corners | |
self.internal_dim = internal_dim | |
self.feat_input_modules = feat_input_modules | |
self.pred_input_modules = pred_input_modules | |
self.rrb_d = rrb_d_dict | |
self.cab = cab_dict | |
self.rrb_u = rrb_u_dict | |
self.use_global_context = use_global_context | |
if use_global_context: | |
self.global_to_internal = nn.Conv2d(global_dim, self.internal_dim, 1, 1, 0) | |
self.global_pooling = nn.AdaptiveAvgPool2d(1) | |
self.terminal_module = ( | |
terminal_module if terminal_module is not None else nn.Identity() | |
) | |
self.upsample_mode = upsample_mode | |
self._scales = [int(key) for key in self.terminal_module.keys()] | |
def scales(self): | |
return self._scales.copy() | |
def forward(self, embeddings, feats, context, key): | |
feats = self.feat_input_modules[str(key)](feats) | |
embeddings = torch.cat([feats, embeddings], dim=1) | |
embeddings = self.rrb_d[str(key)](embeddings) | |
context = self.cab[str(key)]([context, embeddings]) | |
context = self.rrb_u[str(key)](context) | |
preds = self.terminal_module[str(key)](context) | |
pred_coord = preds[:, -2:] | |
pred_certainty = preds[:, :-2] | |
return pred_coord, pred_certainty, context | |
class GP(nn.Module): | |
def __init__( | |
self, | |
kernel, | |
T=1, | |
learn_temperature=False, | |
only_attention=False, | |
gp_dim=64, | |
basis="fourier", | |
covar_size=5, | |
only_nearest_neighbour=False, | |
sigma_noise=0.1, | |
no_cov=False, | |
predict_features = False, | |
): | |
super().__init__() | |
self.K = kernel(T=T, learn_temperature=learn_temperature) | |
self.sigma_noise = sigma_noise | |
self.covar_size = covar_size | |
self.pos_conv = torch.nn.Conv2d(2, gp_dim, 1, 1) | |
self.only_attention = only_attention | |
self.only_nearest_neighbour = only_nearest_neighbour | |
self.basis = basis | |
self.no_cov = no_cov | |
self.dim = gp_dim | |
self.predict_features = predict_features | |
def get_local_cov(self, cov): | |
K = self.covar_size | |
b, h, w, h, w = cov.shape | |
hw = h * w | |
cov = F.pad(cov, 4 * (K // 2,)) # pad v_q | |
delta = torch.stack( | |
torch.meshgrid( | |
torch.arange(-(K // 2), K // 2 + 1), torch.arange(-(K // 2), K // 2 + 1) | |
), | |
dim=-1, | |
) | |
positions = torch.stack( | |
torch.meshgrid( | |
torch.arange(K // 2, h + K // 2), torch.arange(K // 2, w + K // 2) | |
), | |
dim=-1, | |
) | |
neighbours = positions[:, :, None, None, :] + delta[None, :, :] | |
points = torch.arange(hw)[:, None].expand(hw, K**2) | |
local_cov = cov.reshape(b, hw, h + K - 1, w + K - 1)[ | |
:, | |
points.flatten(), | |
neighbours[..., 0].flatten(), | |
neighbours[..., 1].flatten(), | |
].reshape(b, h, w, K**2) | |
return local_cov | |
def reshape(self, x): | |
return rearrange(x, "b d h w -> b (h w) d") | |
def project_to_basis(self, x): | |
if self.basis == "fourier": | |
return torch.cos(8 * math.pi * self.pos_conv(x)) | |
elif self.basis == "linear": | |
return self.pos_conv(x) | |
else: | |
raise ValueError( | |
"No other bases other than fourier and linear currently supported in public release" | |
) | |
def get_pos_enc(self, y): | |
b, c, h, w = y.shape | |
coarse_coords = torch.meshgrid( | |
( | |
torch.linspace(-1 + 1 / h, 1 - 1 / h, h, device=y.device), | |
torch.linspace(-1 + 1 / w, 1 - 1 / w, w, device=y.device), | |
) | |
) | |
coarse_coords = torch.stack((coarse_coords[1], coarse_coords[0]), dim=-1)[ | |
None | |
].expand(b, h, w, 2) | |
coarse_coords = rearrange(coarse_coords, "b h w d -> b d h w") | |
coarse_embedded_coords = self.project_to_basis(coarse_coords) | |
return coarse_embedded_coords | |
def forward(self, x, y, **kwargs): | |
b, c, h1, w1 = x.shape | |
b, c, h2, w2 = y.shape | |
f = self.get_pos_enc(y) | |
if self.predict_features: | |
f = f + y[:,:self.dim] # Stupid way to predict features | |
b, d, h2, w2 = f.shape | |
#assert x.shape == y.shape | |
x, y, f = self.reshape(x), self.reshape(y), self.reshape(f) | |
K_xx = self.K(x, x) | |
K_yy = self.K(y, y) | |
K_xy = self.K(x, y) | |
K_yx = K_xy.permute(0, 2, 1) | |
sigma_noise = self.sigma_noise * torch.eye(h2 * w2, device=x.device)[None, :, :] | |
# Due to https://github.com/pytorch/pytorch/issues/16963 annoying warnings, remove batch if N large | |
if len(K_yy[0]) > 2000: | |
K_yy_inv = torch.cat([torch.linalg.inv(K_yy[k:k+1] + sigma_noise[k:k+1]) for k in range(b)]) | |
else: | |
K_yy_inv = torch.linalg.inv(K_yy + sigma_noise) | |
mu_x = K_xy.matmul(K_yy_inv.matmul(f)) | |
mu_x = rearrange(mu_x, "b (h w) d -> b d h w", h=h1, w=w1) | |
if not self.no_cov: | |
cov_x = K_xx - K_xy.matmul(K_yy_inv.matmul(K_yx)) | |
cov_x = rearrange(cov_x, "b (h w) (r c) -> b h w r c", h=h1, w=w1, r=h1, c=w1) | |
local_cov_x = self.get_local_cov(cov_x) | |
local_cov_x = rearrange(local_cov_x, "b h w K -> b K h w") | |
gp_feats = torch.cat((mu_x, local_cov_x), dim=1) | |
else: | |
gp_feats = mu_x | |
return gp_feats | |
class Encoder(nn.Module): | |
def __init__(self, resnet): | |
super().__init__() | |
self.resnet = resnet | |
def forward(self, x): | |
x0 = x | |
b, c, h, w = x.shape | |
x = self.resnet.conv1(x) | |
x = self.resnet.bn1(x) | |
x1 = self.resnet.relu(x) | |
x = self.resnet.maxpool(x1) | |
x2 = self.resnet.layer1(x) | |
x3 = self.resnet.layer2(x2) | |
x4 = self.resnet.layer3(x3) | |
x5 = self.resnet.layer4(x4) | |
feats = {32: x5, 16: x4, 8: x3, 4: x2, 2: x1, 1: x0} | |
return feats | |
def train(self, mode=True): | |
super().train(mode) | |
for m in self.modules(): | |
if isinstance(m, nn.BatchNorm2d): | |
m.eval() | |
pass | |
class Decoder(nn.Module): | |
def __init__( | |
self, embedding_decoder, gps, proj, conv_refiner, transformers = None, detach=False, scales="all", pos_embeddings = None, | |
): | |
super().__init__() | |
self.embedding_decoder = embedding_decoder | |
self.gps = gps | |
self.proj = proj | |
self.conv_refiner = conv_refiner | |
self.detach = detach | |
if scales == "all": | |
self.scales = ["32", "16", "8", "4", "2", "1"] | |
else: | |
self.scales = scales | |
def upsample_preds(self, flow, certainty, query, support): | |
b, hs, ws, d = flow.shape | |
b, c, h, w = query.shape | |
flow = flow.permute(0, 3, 1, 2) | |
certainty = F.interpolate( | |
certainty, size=(h, w), align_corners=False, mode="bilinear" | |
) | |
flow = F.interpolate( | |
flow, size=(h, w), align_corners=False, mode="bilinear" | |
) | |
delta_certainty, delta_flow = self.conv_refiner["1"](query, support, flow) | |
flow = torch.stack( | |
( | |
flow[:, 0] + delta_flow[:, 0] / (4 * w), | |
flow[:, 1] + delta_flow[:, 1] / (4 * h), | |
), | |
dim=1, | |
) | |
flow = flow.permute(0, 2, 3, 1) | |
certainty = certainty + delta_certainty | |
return flow, certainty | |
def get_placeholder_flow(self, b, h, w, device): | |
coarse_coords = torch.meshgrid( | |
( | |
torch.linspace(-1 + 1 / h, 1 - 1 / h, h, device=device), | |
torch.linspace(-1 + 1 / w, 1 - 1 / w, w, device=device), | |
) | |
) | |
coarse_coords = torch.stack((coarse_coords[1], coarse_coords[0]), dim=-1)[ | |
None | |
].expand(b, h, w, 2) | |
coarse_coords = rearrange(coarse_coords, "b h w d -> b d h w") | |
return coarse_coords | |
def forward(self, f1, f2, upsample = False, dense_flow = None, dense_certainty = None): | |
coarse_scales = self.embedding_decoder.scales() | |
all_scales = self.scales if not upsample else ["8", "4", "2", "1"] | |
sizes = {scale: f1[scale].shape[-2:] for scale in f1} | |
h, w = sizes[1] | |
b = f1[1].shape[0] | |
device = f1[1].device | |
coarsest_scale = int(all_scales[0]) | |
old_stuff = torch.zeros( | |
b, self.embedding_decoder.internal_dim, *sizes[coarsest_scale], device=f1[coarsest_scale].device | |
) | |
dense_corresps = {} | |
if not upsample: | |
dense_flow = self.get_placeholder_flow(b, *sizes[coarsest_scale], device) | |
dense_certainty = 0.0 | |
else: | |
dense_flow = F.interpolate( | |
dense_flow, | |
size=sizes[coarsest_scale], | |
align_corners=False, | |
mode="bilinear", | |
) | |
dense_certainty = F.interpolate( | |
dense_certainty, | |
size=sizes[coarsest_scale], | |
align_corners=False, | |
mode="bilinear", | |
) | |
for new_scale in all_scales: | |
ins = int(new_scale) | |
f1_s, f2_s = f1[ins], f2[ins] | |
if new_scale in self.proj: | |
f1_s, f2_s = self.proj[new_scale](f1_s), self.proj[new_scale](f2_s) | |
b, c, hs, ws = f1_s.shape | |
if ins in coarse_scales: | |
old_stuff = F.interpolate( | |
old_stuff, size=sizes[ins], mode="bilinear", align_corners=False | |
) | |
new_stuff = self.gps[new_scale](f1_s, f2_s, dense_flow=dense_flow) | |
dense_flow, dense_certainty, old_stuff = self.embedding_decoder( | |
new_stuff, f1_s, old_stuff, new_scale | |
) | |
if new_scale in self.conv_refiner: | |
delta_certainty, displacement = self.conv_refiner[new_scale]( | |
f1_s, f2_s, dense_flow | |
) | |
dense_flow = torch.stack( | |
( | |
dense_flow[:, 0] + ins * displacement[:, 0] / (4 * w), | |
dense_flow[:, 1] + ins * displacement[:, 1] / (4 * h), | |
), | |
dim=1, | |
) | |
dense_certainty = ( | |
dense_certainty + delta_certainty | |
) # predict both certainty and displacement | |
dense_corresps[ins] = { | |
"dense_flow": dense_flow, | |
"dense_certainty": dense_certainty, | |
} | |
if new_scale != "1": | |
dense_flow = F.interpolate( | |
dense_flow, | |
size=sizes[ins // 2], | |
align_corners=False, | |
mode="bilinear", | |
) | |
dense_certainty = F.interpolate( | |
dense_certainty, | |
size=sizes[ins // 2], | |
align_corners=False, | |
mode="bilinear", | |
) | |
if self.detach: | |
dense_flow = dense_flow.detach() | |
dense_certainty = dense_certainty.detach() | |
return dense_corresps | |
class RegressionMatcher(nn.Module): | |
def __init__( | |
self, | |
encoder, | |
decoder, | |
h=384, | |
w=512, | |
use_contrastive_loss = False, | |
alpha = 1, | |
beta = 0, | |
sample_mode = "threshold", | |
upsample_preds = True, | |
symmetric = False, | |
name = None, | |
use_soft_mutual_nearest_neighbours = False, | |
): | |
super().__init__() | |
self.encoder = encoder | |
self.decoder = decoder | |
self.w_resized = w | |
self.h_resized = h | |
self.og_transforms = get_tuple_transform_ops(resize=None, normalize=True) | |
self.use_contrastive_loss = use_contrastive_loss | |
self.alpha = alpha | |
self.beta = beta | |
self.sample_mode = sample_mode | |
self.upsample_preds = upsample_preds | |
self.symmetric = symmetric | |
self.name = name | |
self.sample_thresh = 0.05 | |
self.upsample_res = (1152, 1536) | |
if use_soft_mutual_nearest_neighbours: | |
assert symmetric, "MNS requires symmetric inference" | |
self.use_soft_mutual_nearest_neighbours = use_soft_mutual_nearest_neighbours | |
def extract_backbone_features(self, batch, batched = True, upsample = True): | |
#TODO: only extract stride [1,2,4,8] for upsample = True | |
x_q = batch["query"] | |
x_s = batch["support"] | |
if batched: | |
X = torch.cat((x_q, x_s)) | |
feature_pyramid = self.encoder(X) | |
else: | |
feature_pyramid = self.encoder(x_q), self.encoder(x_s) | |
return feature_pyramid | |
def sample( | |
self, | |
dense_matches, | |
dense_certainty, | |
num=10000, | |
): | |
if "threshold" in self.sample_mode: | |
upper_thresh = self.sample_thresh | |
dense_certainty = dense_certainty.clone() | |
dense_certainty[dense_certainty > upper_thresh] = 1 | |
elif "pow" in self.sample_mode: | |
dense_certainty = dense_certainty**(1/3) | |
elif "naive" in self.sample_mode: | |
dense_certainty = torch.ones_like(dense_certainty) | |
matches, certainty = ( | |
dense_matches.reshape(-1, 4), | |
dense_certainty.reshape(-1), | |
) | |
expansion_factor = 4 if "balanced" in self.sample_mode else 1 | |
if not certainty.sum(): certainty = certainty + 1e-8 | |
good_samples = torch.multinomial(certainty, | |
num_samples = min(expansion_factor*num, len(certainty)), | |
replacement=False) | |
good_matches, good_certainty = matches[good_samples], certainty[good_samples] | |
if "balanced" not in self.sample_mode: | |
return good_matches, good_certainty | |
from dkm.utils.kde import kde | |
density = kde(good_matches, std=0.1) | |
p = 1 / (density+1) | |
p[density < 10] = 1e-7 # Basically should have at least 10 perfect neighbours, or around 100 ok ones | |
balanced_samples = torch.multinomial(p, | |
num_samples = min(num,len(good_certainty)), | |
replacement=False) | |
return good_matches[balanced_samples], good_certainty[balanced_samples] | |
def forward(self, batch, batched = True): | |
feature_pyramid = self.extract_backbone_features(batch, batched=batched) | |
if batched: | |
f_q_pyramid = { | |
scale: f_scale.chunk(2)[0] for scale, f_scale in feature_pyramid.items() | |
} | |
f_s_pyramid = { | |
scale: f_scale.chunk(2)[1] for scale, f_scale in feature_pyramid.items() | |
} | |
else: | |
f_q_pyramid, f_s_pyramid = feature_pyramid | |
dense_corresps = self.decoder(f_q_pyramid, f_s_pyramid) | |
if self.training and self.use_contrastive_loss: | |
return dense_corresps, (f_q_pyramid, f_s_pyramid) | |
else: | |
return dense_corresps | |
def forward_symmetric(self, batch, upsample = False, batched = True): | |
feature_pyramid = self.extract_backbone_features(batch, upsample = upsample, batched = batched) | |
f_q_pyramid = feature_pyramid | |
f_s_pyramid = { | |
scale: torch.cat((f_scale.chunk(2)[1], f_scale.chunk(2)[0])) | |
for scale, f_scale in feature_pyramid.items() | |
} | |
dense_corresps = self.decoder(f_q_pyramid, f_s_pyramid, upsample = upsample, **(batch["corresps"] if "corresps" in batch else {})) | |
return dense_corresps | |
def to_pixel_coordinates(self, matches, H_A, W_A, H_B, W_B): | |
kpts_A, kpts_B = matches[...,:2], matches[...,2:] | |
kpts_A = torch.stack((W_A/2 * (kpts_A[...,0]+1), H_A/2 * (kpts_A[...,1]+1)),axis=-1) | |
kpts_B = torch.stack((W_B/2 * (kpts_B[...,0]+1), H_B/2 * (kpts_B[...,1]+1)),axis=-1) | |
return kpts_A, kpts_B | |
def match( | |
self, | |
im1_path, | |
im2_path, | |
*args, | |
batched=False, | |
): | |
assert not (batched and self.upsample_preds), "Cannot upsample preds if in batchmode (as we don't have access to high res images). You can turn off upsample_preds by model.upsample_preds = False " | |
symmetric = self.symmetric | |
self.train(False) | |
with torch.no_grad(): | |
if not batched: | |
b = 1 | |
ws = self.w_resized | |
hs = self.h_resized | |
query = F.interpolate(im1_path, size=(hs, ws), mode='bilinear', align_corners=False) | |
support = F.interpolate(im2_path, size=(hs, ws), mode='bilinear', align_corners=False) | |
batch = {"query": query, "support": support} | |
else: | |
b, c, h, w = im1_path.shape | |
b, c, h2, w2 = im2_path.shape | |
assert w == w2 and h == h2, "For batched images we assume same size" | |
batch = {"query": im1_path, "support": im2_path} | |
hs, ws = self.h_resized, self.w_resized | |
finest_scale = 1 | |
# Run matcher | |
if symmetric: | |
dense_corresps = self.forward_symmetric(batch, batched = True) | |
else: | |
dense_corresps = self.forward(batch, batched = True) | |
if self.upsample_preds: | |
hs, ws = self.upsample_res | |
low_res_certainty = F.interpolate( | |
dense_corresps[16]["dense_certainty"], size=(hs, ws), align_corners=False, mode="bilinear" | |
) | |
cert_clamp = 0 | |
factor = 0.5 | |
low_res_certainty = factor*low_res_certainty*(low_res_certainty < cert_clamp) | |
if self.upsample_preds: | |
query = F.interpolate(im1_path, size=(hs, ws), mode='bilinear', align_corners=False) | |
support = F.interpolate(im2_path, size=(hs, ws), mode='bilinear', align_corners=False) | |
batch = {"query": query, "support": support, "corresps": dense_corresps[finest_scale]} | |
if symmetric: | |
dense_corresps = self.forward_symmetric(batch, upsample = True, batched=True) | |
else: | |
dense_corresps = self.forward(batch, batched = True, upsample=True) | |
query_to_support = dense_corresps[finest_scale]["dense_flow"] | |
dense_certainty = dense_corresps[finest_scale]["dense_certainty"] | |
# Get certainty interpolation | |
dense_certainty = dense_certainty - low_res_certainty | |
query_to_support = query_to_support.permute( | |
0, 2, 3, 1 | |
) | |
# Create im1 meshgrid | |
query_coords = torch.meshgrid( | |
( | |
torch.linspace(-1 + 1 / hs, 1 - 1 / hs, hs, device=im1_path.device), | |
torch.linspace(-1 + 1 / ws, 1 - 1 / ws, ws, device=im1_path.device), | |
) | |
) | |
query_coords = torch.stack((query_coords[1], query_coords[0])) | |
query_coords = query_coords[None].expand(b, 2, hs, ws) | |
dense_certainty = dense_certainty.sigmoid() # logits -> probs | |
query_coords = query_coords.permute(0, 2, 3, 1) | |
if (query_to_support.abs() > 1).any() and True: | |
wrong = (query_to_support.abs() > 1).sum(dim=-1) > 0 | |
dense_certainty[wrong[:,None]] = 0 | |
query_to_support = torch.clamp(query_to_support, -1, 1) | |
if symmetric: | |
support_coords = query_coords | |
qts, stq = query_to_support.chunk(2) | |
q_warp = torch.cat((query_coords, qts), dim=-1) | |
s_warp = torch.cat((stq, support_coords), dim=-1) | |
warp = torch.cat((q_warp, s_warp),dim=2) | |
dense_certainty = torch.cat(dense_certainty.chunk(2), dim=3)[:,0] | |
else: | |
warp = torch.cat((query_coords, query_to_support), dim=-1) | |
if batched: | |
return ( | |
warp, | |
dense_certainty | |
) | |
else: | |
return ( | |
warp[0], | |
dense_certainty[0], | |
) | |