Spaces:
Running
on
Zero
Running
on
Zero
| from PIL import Image | |
| import torch | |
| import torch.nn.functional as F | |
| import numpy as np | |
| from dkm.utils.utils import tensor_to_pil | |
| import cv2 | |
| from dkm import DKMv3_outdoor | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| if __name__ == "__main__": | |
| from argparse import ArgumentParser | |
| parser = ArgumentParser() | |
| parser.add_argument("--im_A_path", default="assets/sacre_coeur_A.jpg", type=str) | |
| parser.add_argument("--im_B_path", default="assets/sacre_coeur_B.jpg", type=str) | |
| args, _ = parser.parse_known_args() | |
| im1_path = args.im_A_path | |
| im2_path = args.im_B_path | |
| # Create model | |
| dkm_model = DKMv3_outdoor(device=device) | |
| W_A, H_A = Image.open(im1_path).size | |
| W_B, H_B = Image.open(im2_path).size | |
| # Match | |
| warp, certainty = dkm_model.match(im1_path, im2_path, device=device) | |
| # Sample matches for estimation | |
| matches, certainty = dkm_model.sample(warp, certainty) | |
| kpts1, kpts2 = dkm_model.to_pixel_coordinates(matches, H_A, W_A, H_B, W_B) | |
| F, mask = cv2.findFundamentalMat( | |
| kpts1.cpu().numpy(), kpts2.cpu().numpy(), ransacReprojThreshold=0.2, method=cv2.USAC_MAGSAC, confidence=0.999999, maxIters=10000 | |
| ) | |
| # TODO: some better visualization |