Spaces:
Running
Running
import argparse | |
import numpy as np | |
import imageio | |
import torch | |
from tqdm import tqdm | |
import scipy | |
import scipy.io | |
import scipy.misc | |
from lib.model_test import D2Net | |
from lib.utils import preprocess_image | |
from lib.pyramid import process_multiscale | |
# CUDA | |
use_cuda = torch.cuda.is_available() | |
device = torch.device("cuda:0" if use_cuda else "cpu") | |
# Argument parsing | |
parser = argparse.ArgumentParser(description="Feature extraction script") | |
parser.add_argument( | |
"--image_list_file", | |
type=str, | |
required=True, | |
help="path to a file containing a list of images to process", | |
) | |
parser.add_argument( | |
"--preprocessing", | |
type=str, | |
default="caffe", | |
help="image preprocessing (caffe or torch)", | |
) | |
parser.add_argument( | |
"--model_file", type=str, default="models/d2_tf.pth", help="path to the full model" | |
) | |
parser.add_argument( | |
"--max_edge", type=int, default=1600, help="maximum image size at network input" | |
) | |
parser.add_argument( | |
"--max_sum_edges", | |
type=int, | |
default=2800, | |
help="maximum sum of image sizes at network input", | |
) | |
parser.add_argument( | |
"--output_extension", type=str, default=".d2-net", help="extension for the output" | |
) | |
parser.add_argument( | |
"--output_type", type=str, default="npz", help="output file type (npz or mat)" | |
) | |
parser.add_argument( | |
"--multiscale", | |
dest="multiscale", | |
action="store_true", | |
help="extract multiscale features", | |
) | |
parser.set_defaults(multiscale=False) | |
parser.add_argument( | |
"--no-relu", | |
dest="use_relu", | |
action="store_false", | |
help="remove ReLU after the dense feature extraction module", | |
) | |
parser.set_defaults(use_relu=True) | |
args = parser.parse_args() | |
print(args) | |
# Creating CNN model | |
model = D2Net(model_file=args.model_file, use_relu=args.use_relu, use_cuda=use_cuda) | |
# Process the file | |
with open(args.image_list_file, "r") as f: | |
lines = f.readlines() | |
for line in tqdm(lines, total=len(lines)): | |
path = line.strip() | |
image = imageio.imread(path) | |
if len(image.shape) == 2: | |
image = image[:, :, np.newaxis] | |
image = np.repeat(image, 3, -1) | |
# TODO: switch to PIL.Image due to deprecation of scipy.misc.imresize. | |
resized_image = image | |
if max(resized_image.shape) > args.max_edge: | |
resized_image = scipy.misc.imresize( | |
resized_image, args.max_edge / max(resized_image.shape) | |
).astype("float") | |
if sum(resized_image.shape[:2]) > args.max_sum_edges: | |
resized_image = scipy.misc.imresize( | |
resized_image, args.max_sum_edges / sum(resized_image.shape[:2]) | |
).astype("float") | |
fact_i = image.shape[0] / resized_image.shape[0] | |
fact_j = image.shape[1] / resized_image.shape[1] | |
input_image = preprocess_image(resized_image, preprocessing=args.preprocessing) | |
with torch.no_grad(): | |
if args.multiscale: | |
keypoints, scores, descriptors = process_multiscale( | |
torch.tensor( | |
input_image[np.newaxis, :, :, :].astype(np.float32), device=device | |
), | |
model, | |
) | |
else: | |
keypoints, scores, descriptors = process_multiscale( | |
torch.tensor( | |
input_image[np.newaxis, :, :, :].astype(np.float32), device=device | |
), | |
model, | |
scales=[1], | |
) | |
# Input image coordinates | |
keypoints[:, 0] *= fact_i | |
keypoints[:, 1] *= fact_j | |
# i, j -> u, v | |
keypoints = keypoints[:, [1, 0, 2]] | |
if args.output_type == "npz": | |
with open(path + args.output_extension, "wb") as output_file: | |
np.savez( | |
output_file, keypoints=keypoints, scores=scores, descriptors=descriptors | |
) | |
elif args.output_type == "mat": | |
with open(path + args.output_extension, "wb") as output_file: | |
scipy.io.savemat( | |
output_file, | |
{"keypoints": keypoints, "scores": scores, "descriptors": descriptors}, | |
) | |
else: | |
raise ValueError("Unknown output type.") | |