Vincentqyw
fix: roma
c74a070
raw
history blame
18.7 kB
from pathlib import Path
from types import SimpleNamespace
import warnings
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from typing import Optional, List, Callable
try:
from flash_attn.modules.mha import FlashCrossAttention
except ModuleNotFoundError:
FlashCrossAttention = None
if FlashCrossAttention or hasattr(F, "scaled_dot_product_attention"):
FLASH_AVAILABLE = True
else:
FLASH_AVAILABLE = False
torch.backends.cudnn.deterministic = True
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
def normalize_keypoints(kpts: torch.Tensor, size: torch.Tensor) -> torch.Tensor:
if isinstance(size, torch.Size):
size = torch.tensor(size)[None]
shift = size.float().to(kpts) / 2
scale = size.max(1).values.float().to(kpts) / 2
kpts = (kpts - shift[:, None]) / scale[:, None, None]
return kpts
def rotate_half(x: torch.Tensor) -> torch.Tensor:
x = x.unflatten(-1, (-1, 2))
x1, x2 = x.unbind(dim=-1)
return torch.stack((-x2, x1), dim=-1).flatten(start_dim=-2)
def apply_cached_rotary_emb(freqs: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
return (t * freqs[0]) + (rotate_half(t) * freqs[1])
class LearnableFourierPositionalEncoding(nn.Module):
def __init__(self, M: int, dim: int, F_dim: int = None, gamma: float = 1.0) -> None:
super().__init__()
F_dim = F_dim if F_dim is not None else dim
self.gamma = gamma
self.Wr = nn.Linear(M, F_dim // 2, bias=False)
nn.init.normal_(self.Wr.weight.data, mean=0, std=self.gamma**-2)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""encode position vector"""
projected = self.Wr(x)
cosines, sines = torch.cos(projected), torch.sin(projected)
emb = torch.stack([cosines, sines], 0).unsqueeze(-3)
return emb.repeat_interleave(2, dim=-1)
class TokenConfidence(nn.Module):
def __init__(self, dim: int) -> None:
super().__init__()
self.token = nn.Sequential(nn.Linear(dim, 1), nn.Sigmoid())
def forward(self, desc0: torch.Tensor, desc1: torch.Tensor):
"""get confidence tokens"""
return (
self.token(desc0.detach().float()).squeeze(-1),
self.token(desc1.detach().float()).squeeze(-1),
)
class Attention(nn.Module):
def __init__(self, allow_flash: bool) -> None:
super().__init__()
if allow_flash and not FLASH_AVAILABLE:
warnings.warn(
"FlashAttention is not available. For optimal speed, "
"consider installing torch >= 2.0 or flash-attn.",
stacklevel=2,
)
self.enable_flash = allow_flash and FLASH_AVAILABLE
if allow_flash and FlashCrossAttention:
self.flash_ = FlashCrossAttention()
def forward(self, q, k, v) -> torch.Tensor:
if self.enable_flash and q.device.type == "cuda":
if FlashCrossAttention:
q, k, v = [x.transpose(-2, -3) for x in [q, k, v]]
m = self.flash_(q.half(), torch.stack([k, v], 2).half())
return m.transpose(-2, -3).to(q.dtype)
else: # use torch 2.0 scaled_dot_product_attention with flash
args = [x.half().contiguous() for x in [q, k, v]]
with torch.backends.cuda.sdp_kernel(enable_flash=True):
return F.scaled_dot_product_attention(*args).to(q.dtype)
elif hasattr(F, "scaled_dot_product_attention"):
args = [x.contiguous() for x in [q, k, v]]
return F.scaled_dot_product_attention(*args).to(q.dtype)
else:
s = q.shape[-1] ** -0.5
attn = F.softmax(torch.einsum("...id,...jd->...ij", q, k) * s, -1)
return torch.einsum("...ij,...jd->...id", attn, v)
class Transformer(nn.Module):
def __init__(
self, embed_dim: int, num_heads: int, flash: bool = False, bias: bool = True
) -> None:
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
assert self.embed_dim % num_heads == 0
self.head_dim = self.embed_dim // num_heads
self.Wqkv = nn.Linear(embed_dim, 3 * embed_dim, bias=bias)
self.inner_attn = Attention(flash)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.ffn = nn.Sequential(
nn.Linear(2 * embed_dim, 2 * embed_dim),
nn.LayerNorm(2 * embed_dim, elementwise_affine=True),
nn.GELU(),
nn.Linear(2 * embed_dim, embed_dim),
)
def _forward(self, x: torch.Tensor, encoding: Optional[torch.Tensor] = None):
qkv = self.Wqkv(x)
qkv = qkv.unflatten(-1, (self.num_heads, -1, 3)).transpose(1, 2)
q, k, v = qkv[..., 0], qkv[..., 1], qkv[..., 2]
if encoding is not None:
q = apply_cached_rotary_emb(encoding, q)
k = apply_cached_rotary_emb(encoding, k)
context = self.inner_attn(q, k, v)
message = self.out_proj(context.transpose(1, 2).flatten(start_dim=-2))
return x + self.ffn(torch.cat([x, message], -1))
def forward(self, x0, x1, encoding0=None, encoding1=None):
return self._forward(x0, encoding0), self._forward(x1, encoding1)
class CrossTransformer(nn.Module):
def __init__(
self, embed_dim: int, num_heads: int, flash: bool = False, bias: bool = True
) -> None:
super().__init__()
self.heads = num_heads
dim_head = embed_dim // num_heads
self.scale = dim_head**-0.5
inner_dim = dim_head * num_heads
self.to_qk = nn.Linear(embed_dim, inner_dim, bias=bias)
self.to_v = nn.Linear(embed_dim, inner_dim, bias=bias)
self.to_out = nn.Linear(inner_dim, embed_dim, bias=bias)
self.ffn = nn.Sequential(
nn.Linear(2 * embed_dim, 2 * embed_dim),
nn.LayerNorm(2 * embed_dim, elementwise_affine=True),
nn.GELU(),
nn.Linear(2 * embed_dim, embed_dim),
)
if flash and FLASH_AVAILABLE:
self.flash = Attention(True)
else:
self.flash = None
def map_(self, func: Callable, x0: torch.Tensor, x1: torch.Tensor):
return func(x0), func(x1)
def forward(self, x0: torch.Tensor, x1: torch.Tensor) -> List[torch.Tensor]:
qk0, qk1 = self.map_(self.to_qk, x0, x1)
v0, v1 = self.map_(self.to_v, x0, x1)
qk0, qk1, v0, v1 = map(
lambda t: t.unflatten(-1, (self.heads, -1)).transpose(1, 2),
(qk0, qk1, v0, v1),
)
if self.flash is not None:
m0 = self.flash(qk0, qk1, v1)
m1 = self.flash(qk1, qk0, v0)
else:
qk0, qk1 = qk0 * self.scale**0.5, qk1 * self.scale**0.5
sim = torch.einsum("b h i d, b h j d -> b h i j", qk0, qk1)
attn01 = F.softmax(sim, dim=-1)
attn10 = F.softmax(sim.transpose(-2, -1).contiguous(), dim=-1)
m0 = torch.einsum("bhij, bhjd -> bhid", attn01, v1)
m1 = torch.einsum("bhji, bhjd -> bhid", attn10.transpose(-2, -1), v0)
m0, m1 = self.map_(lambda t: t.transpose(1, 2).flatten(start_dim=-2), m0, m1)
m0, m1 = self.map_(self.to_out, m0, m1)
x0 = x0 + self.ffn(torch.cat([x0, m0], -1))
x1 = x1 + self.ffn(torch.cat([x1, m1], -1))
return x0, x1
def sigmoid_log_double_softmax(
sim: torch.Tensor, z0: torch.Tensor, z1: torch.Tensor
) -> torch.Tensor:
"""create the log assignment matrix from logits and similarity"""
b, m, n = sim.shape
certainties = F.logsigmoid(z0) + F.logsigmoid(z1).transpose(1, 2)
scores0 = F.log_softmax(sim, 2)
scores1 = F.log_softmax(sim.transpose(-1, -2).contiguous(), 2).transpose(-1, -2)
scores = sim.new_full((b, m + 1, n + 1), 0)
scores[:, :m, :n] = scores0 + scores1 + certainties
scores[:, :-1, -1] = F.logsigmoid(-z0.squeeze(-1))
scores[:, -1, :-1] = F.logsigmoid(-z1.squeeze(-1))
return scores
class MatchAssignment(nn.Module):
def __init__(self, dim: int) -> None:
super().__init__()
self.dim = dim
self.matchability = nn.Linear(dim, 1, bias=True)
self.final_proj = nn.Linear(dim, dim, bias=True)
def forward(self, desc0: torch.Tensor, desc1: torch.Tensor):
"""build assignment matrix from descriptors"""
mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1)
_, _, d = mdesc0.shape
mdesc0, mdesc1 = mdesc0 / d**0.25, mdesc1 / d**0.25
sim = torch.einsum("bmd,bnd->bmn", mdesc0, mdesc1)
z0 = self.matchability(desc0)
z1 = self.matchability(desc1)
scores = sigmoid_log_double_softmax(sim, z0, z1)
return scores, sim
def scores(self, desc0: torch.Tensor, desc1: torch.Tensor):
m0 = torch.sigmoid(self.matchability(desc0)).squeeze(-1)
m1 = torch.sigmoid(self.matchability(desc1)).squeeze(-1)
return m0, m1
def filter_matches(scores: torch.Tensor, th: float):
"""obtain matches from a log assignment matrix [Bx M+1 x N+1]"""
max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1)
m0, m1 = max0.indices, max1.indices
mutual0 = torch.arange(m0.shape[1]).to(m0)[None] == m1.gather(1, m0)
mutual1 = torch.arange(m1.shape[1]).to(m1)[None] == m0.gather(1, m1)
max0_exp = max0.values.exp()
zero = max0_exp.new_tensor(0)
mscores0 = torch.where(mutual0, max0_exp, zero)
mscores1 = torch.where(mutual1, mscores0.gather(1, m1), zero)
if th is not None:
valid0 = mutual0 & (mscores0 > th)
else:
valid0 = mutual0
valid1 = mutual1 & valid0.gather(1, m1)
m0 = torch.where(valid0, m0, m0.new_tensor(-1))
m1 = torch.where(valid1, m1, m1.new_tensor(-1))
return m0, m1, mscores0, mscores1
class LightGlue(nn.Module):
default_conf = {
"name": "lightglue", # just for interfacing
"input_dim": 256, # input descriptor dimension (autoselected from weights)
"descriptor_dim": 256,
"n_layers": 9,
"num_heads": 4,
"flash": True, # enable FlashAttention if available.
"mp": False, # enable mixed precision
"depth_confidence": 0.95, # early stopping, disable with -1
"width_confidence": 0.99, # point pruning, disable with -1
"filter_threshold": 0.1, # match threshold
"weights": None,
}
required_data_keys = ["image0", "image1"]
version = "v0.1_arxiv"
url = "https://github.com/cvg/LightGlue/releases/download/{}/{}_lightglue.pth"
features = {
"superpoint": ("superpoint_lightglue", 256),
"disk": ("disk_lightglue", 128),
}
def __init__(self, features="superpoint", **conf) -> None:
super().__init__()
self.conf = {**self.default_conf, **conf}
if features is not None:
assert features in list(self.features.keys())
self.conf["weights"], self.conf["input_dim"] = self.features[features]
self.conf = conf = SimpleNamespace(**self.conf)
if conf.input_dim != conf.descriptor_dim:
self.input_proj = nn.Linear(conf.input_dim, conf.descriptor_dim, bias=True)
else:
self.input_proj = nn.Identity()
head_dim = conf.descriptor_dim // conf.num_heads
self.posenc = LearnableFourierPositionalEncoding(2, head_dim, head_dim)
h, n, d = conf.num_heads, conf.n_layers, conf.descriptor_dim
self.self_attn = nn.ModuleList(
[Transformer(d, h, conf.flash) for _ in range(n)]
)
self.cross_attn = nn.ModuleList(
[CrossTransformer(d, h, conf.flash) for _ in range(n)]
)
self.log_assignment = nn.ModuleList([MatchAssignment(d) for _ in range(n)])
self.token_confidence = nn.ModuleList(
[TokenConfidence(d) for _ in range(n - 1)]
)
if features is not None:
fname = f"{conf.weights}_{self.version}.pth".replace(".", "-")
state_dict = torch.hub.load_state_dict_from_url(
self.url.format(self.version, features), file_name=fname
)
self.load_state_dict(state_dict, strict=False)
elif conf.weights is not None:
path = Path(__file__).parent
path = path / "weights/{}.pth".format(self.conf.weights)
state_dict = torch.load(str(path), map_location="cpu")
self.load_state_dict(state_dict, strict=False)
print("Loaded LightGlue model")
def forward(self, data: dict) -> dict:
"""
Match keypoints and descriptors between two images
Input (dict):
image0: dict
keypoints: [B x M x 2]
descriptors: [B x M x D]
image: [B x C x H x W] or image_size: [B x 2]
image1: dict
keypoints: [B x N x 2]
descriptors: [B x N x D]
image: [B x C x H x W] or image_size: [B x 2]
Output (dict):
log_assignment: [B x M+1 x N+1]
matches0: [B x M]
matching_scores0: [B x M]
matches1: [B x N]
matching_scores1: [B x N]
matches: List[[Si x 2]], scores: List[[Si]]
"""
with torch.autocast(enabled=self.conf.mp, device_type="cuda"):
return self._forward(data)
def _forward(self, data: dict) -> dict:
for key in self.required_data_keys:
assert key in data, f"Missing key {key} in data"
data0, data1 = data["image0"], data["image1"]
kpts0_, kpts1_ = data0["keypoints"], data1["keypoints"]
b, m, _ = kpts0_.shape
b, n, _ = kpts1_.shape
size0, size1 = data0.get("image_size"), data1.get("image_size")
size0 = size0 if size0 is not None else data0["image"].shape[-2:][::-1]
size1 = size1 if size1 is not None else data1["image"].shape[-2:][::-1]
kpts0 = normalize_keypoints(kpts0_, size=size0)
kpts1 = normalize_keypoints(kpts1_, size=size1)
assert torch.all(kpts0 >= -1) and torch.all(kpts0 <= 1)
assert torch.all(kpts1 >= -1) and torch.all(kpts1 <= 1)
desc0 = data0["descriptors"].detach()
desc1 = data1["descriptors"].detach()
assert desc0.shape[-1] == self.conf.input_dim
assert desc1.shape[-1] == self.conf.input_dim
if torch.is_autocast_enabled():
desc0 = desc0.half()
desc1 = desc1.half()
desc0 = self.input_proj(desc0)
desc1 = self.input_proj(desc1)
# cache positional embeddings
encoding0 = self.posenc(kpts0)
encoding1 = self.posenc(kpts1)
# GNN + final_proj + assignment
ind0 = torch.arange(0, m).to(device=kpts0.device)[None]
ind1 = torch.arange(0, n).to(device=kpts0.device)[None]
prune0 = torch.ones_like(ind0) # store layer where pruning is detected
prune1 = torch.ones_like(ind1)
dec, wic = self.conf.depth_confidence, self.conf.width_confidence
token0, token1 = None, None
for i in range(self.conf.n_layers):
# self+cross attention
desc0, desc1 = self.self_attn[i](desc0, desc1, encoding0, encoding1)
desc0, desc1 = self.cross_attn[i](desc0, desc1)
if i == self.conf.n_layers - 1:
continue # no early stopping or adaptive width at last layer
if dec > 0: # early stopping
token0, token1 = self.token_confidence[i](desc0, desc1)
if self.stop(token0, token1, self.conf_th(i), dec, m + n):
break
if wic > 0: # point pruning
match0, match1 = self.log_assignment[i].scores(desc0, desc1)
mask0 = self.get_mask(token0, match0, self.conf_th(i), 1 - wic)
mask1 = self.get_mask(token1, match1, self.conf_th(i), 1 - wic)
ind0, ind1 = ind0[mask0][None], ind1[mask1][None]
desc0, desc1 = desc0[mask0][None], desc1[mask1][None]
if desc0.shape[-2] == 0 or desc1.shape[-2] == 0:
break
encoding0 = encoding0[:, :, mask0][:, None]
encoding1 = encoding1[:, :, mask1][:, None]
prune0[:, ind0] += 1
prune1[:, ind1] += 1
if wic > 0: # scatter with indices after pruning
scores_, _ = self.log_assignment[i](desc0, desc1)
dt, dev = scores_.dtype, scores_.device
scores = torch.zeros(b, m + 1, n + 1, dtype=dt, device=dev)
scores[:, :-1, :-1] = -torch.inf
scores[:, ind0[0], -1] = scores_[:, :-1, -1]
scores[:, -1, ind1[0]] = scores_[:, -1, :-1]
x, y = torch.meshgrid(ind0[0], ind1[0], indexing="ij")
scores[:, x, y] = scores_[:, :-1, :-1]
else:
scores, _ = self.log_assignment[i](desc0, desc1)
m0, m1, mscores0, mscores1 = filter_matches(scores, self.conf.filter_threshold)
matches, mscores = [], []
for k in range(b):
valid = m0[k] > -1
matches.append(torch.stack([torch.where(valid)[0], m0[k][valid]], -1))
mscores.append(mscores0[k][valid])
return {
"log_assignment": scores,
"matches0": m0,
"matches1": m1,
"matching_scores0": mscores0,
"matching_scores1": mscores1,
"stop": i + 1,
"prune0": prune0,
"prune1": prune1,
"matches": matches,
"scores": mscores,
}
def conf_th(self, i: int) -> float:
"""scaled confidence threshold"""
return np.clip(0.8 + 0.1 * np.exp(-4.0 * i / self.conf.n_layers), 0, 1)
def get_mask(
self,
confidence: torch.Tensor,
match: torch.Tensor,
conf_th: float,
match_th: float,
) -> torch.Tensor:
"""mask points which should be removed"""
if conf_th and confidence is not None:
mask = (
torch.where(confidence > conf_th, match, match.new_tensor(1.0))
> match_th
)
else:
mask = match > match_th
return mask
def stop(
self,
token0: torch.Tensor,
token1: torch.Tensor,
conf_th: float,
inl_th: float,
seql: int,
) -> torch.Tensor:
"""evaluate stopping condition"""
tokens = torch.cat([token0, token1], -1)
if conf_th:
pos = 1.0 - (tokens < conf_th).float().sum() / seql
return pos > inl_th
else:
return tokens.mean() > inl_th