Spaces:
Running
Running
import bisect | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib, os, cv2 | |
import matplotlib.cm as cm | |
from PIL import Image | |
import torch.nn.functional as F | |
import torch | |
def _compute_conf_thresh(data): | |
dataset_name = data['dataset_name'][0].lower() | |
if dataset_name == 'scannet': | |
thr = 5e-4 | |
elif dataset_name == 'megadepth': | |
thr = 1e-4 | |
else: | |
raise ValueError(f'Unknown dataset: {dataset_name}') | |
return thr | |
# --- VISUALIZATION --- # | |
def make_matching_figure( | |
img0, img1, mkpts0, mkpts1, color, | |
kpts0=None, kpts1=None, text=[], dpi=75, path=None): | |
# draw image pair | |
assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}' | |
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi) | |
axes[0].imshow(img0) # , cmap='gray') | |
axes[1].imshow(img1) # , cmap='gray') | |
for i in range(2): # clear all frames | |
axes[i].get_yaxis().set_ticks([]) | |
axes[i].get_xaxis().set_ticks([]) | |
for spine in axes[i].spines.values(): | |
spine.set_visible(False) | |
plt.tight_layout(pad=1) | |
if kpts0 is not None: | |
assert kpts1 is not None | |
axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c='w', s=5) | |
axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c='w', s=5) | |
# draw matches | |
if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0: | |
fig.canvas.draw() | |
transFigure = fig.transFigure.inverted() | |
fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0)) | |
fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1)) | |
fig.lines = [matplotlib.lines.Line2D((fkpts0[i, 0], fkpts1[i, 0]), | |
(fkpts0[i, 1], fkpts1[i, 1]), | |
transform=fig.transFigure, c=color[i], linewidth=2) | |
for i in range(len(mkpts0))] | |
axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color[..., :3], s=4) | |
axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color[..., :3], s=4) | |
# put txts | |
txt_color = 'k' if img0[:100, :200].mean() > 200 else 'w' | |
fig.text( | |
0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes, | |
fontsize=15, va='top', ha='left', color=txt_color) | |
# save or return figure | |
if path: | |
plt.savefig(str(path), bbox_inches='tight', pad_inches=0) | |
plt.close() | |
else: | |
return fig | |
def _make_evaluation_figure(data, b_id, alpha='dynamic'): | |
b_mask = data['m_bids'] == b_id | |
conf_thr = _compute_conf_thresh(data) | |
img0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.int32) | |
img1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.int32) | |
kpts0 = data['mkpts0_f'][b_mask].cpu().numpy() | |
kpts1 = data['mkpts1_f'][b_mask].cpu().numpy() | |
# for megadepth, we visualize matches on the resized image | |
if 'scale0' in data: | |
kpts0 = kpts0 / data['scale0'][b_id].cpu().numpy()[[1, 0]] | |
kpts1 = kpts1 / data['scale1'][b_id].cpu().numpy()[[1, 0]] | |
epi_errs = data['epi_errs'][b_mask].cpu().numpy() | |
correct_mask = epi_errs < conf_thr | |
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0 | |
n_correct = np.sum(correct_mask) | |
n_gt_matches = int(data['conf_matrix_gt'][b_id].sum().cpu()) | |
recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches) | |
# recall might be larger than 1, since the calculation of conf_matrix_gt | |
# uses groundtruth depths and camera poses, but epipolar distance is used here. | |
# matching info | |
if alpha == 'dynamic': | |
alpha = dynamic_alpha(len(correct_mask)) | |
color = error_colormap(epi_errs, conf_thr, alpha=alpha) | |
text = [ | |
f'#Matches {len(kpts0)}', | |
f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}', | |
f'Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}' | |
] | |
# make the figure | |
figure = make_matching_figure(img0, img1, kpts0, kpts1, | |
color, text=text) | |
return figure | |
def _make_confidence_figure(data, b_id): | |
# TODO: Implement confidence figure | |
raise NotImplementedError() | |
def make_matching_figures(data, config, mode='evaluation'): | |
""" Make matching figures for a batch. | |
Args: | |
data (Dict): a batch updated by PL_LoFTR. | |
config (Dict): matcher config | |
Returns: | |
figures (Dict[str, List[plt.figure]] | |
""" | |
assert mode in ['evaluation', 'confidence'] # 'confidence' | |
figures = {mode: []} | |
for b_id in range(data['image0'].size(0)): | |
if mode == 'evaluation': | |
fig = _make_evaluation_figure( | |
data, b_id, | |
alpha=config.TRAINER.PLOT_MATCHES_ALPHA) | |
elif mode == 'confidence': | |
fig = _make_confidence_figure(data, b_id) | |
else: | |
raise ValueError(f'Unknown plot mode: {mode}') | |
figures[mode].append(fig) | |
return figures | |
def dynamic_alpha(n_matches, | |
milestones=[0, 300, 1000, 2000], | |
alphas=[1.0, 0.8, 0.4, 0.2]): | |
if n_matches == 0: | |
return 1.0 | |
ranges = list(zip(alphas, alphas[1:] + [None])) | |
loc = bisect.bisect_right(milestones, n_matches) - 1 | |
_range = ranges[loc] | |
if _range[1] is None: | |
return _range[0] | |
return _range[1] + (milestones[loc + 1] - n_matches) / ( | |
milestones[loc + 1] - milestones[loc]) * (_range[0] - _range[1]) | |
def error_colormap(err, thr, alpha=1.0): | |
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}" | |
x = 1 - np.clip(err / (thr * 2), 0, 1) | |
return np.clip( | |
np.stack([2-x*2, x*2, np.zeros_like(x), np.ones_like(x)*alpha], -1), 0, 1) | |
np.random.seed(1995) | |
color_map = np.arange(100) | |
np.random.shuffle(color_map) | |
def draw_topics(data, img0, img1, saved_folder="viz_topics", show_n_topics=8, saved_name=None): | |
topic0, topic1 = data["topic_matrix"]["img0"], data["topic_matrix"]["img1"] | |
hw0_c, hw1_c = data["hw0_c"], data["hw1_c"] | |
hw0_i, hw1_i = data["hw0_i"], data["hw1_i"] | |
# print(hw0_i, hw1_i) | |
scale0, scale1 = hw0_i[0] // hw0_c[0], hw1_i[0] // hw1_c[0] | |
if "scale0" in data: | |
scale0 *= data["scale0"][0] | |
else: | |
scale0 = (scale0, scale0) | |
if "scale1" in data: | |
scale1 *= data["scale1"][0] | |
else: | |
scale1 = (scale1, scale1) | |
n_topics = topic0.shape[-1] | |
# mask0_nonzero = topic0[0].sum(dim=-1, keepdim=True) > 0 | |
# mask1_nonzero = topic1[0].sum(dim=-1, keepdim=True) > 0 | |
theta0 = topic0[0].sum(dim=0) | |
theta0 /= theta0.sum().float() | |
theta1 = topic1[0].sum(dim=0) | |
theta1 /= theta1.sum().float() | |
# top_topic0 = torch.argsort(theta0, descending=True)[:show_n_topics] | |
# top_topic1 = torch.argsort(theta1, descending=True)[:show_n_topics] | |
top_topics = torch.argsort(theta0*theta1, descending=True)[:show_n_topics] | |
# print(sum_topic0, sum_topic1) | |
topic0 = topic0[0].argmax(dim=-1, keepdim=True) #.float() / (n_topics - 1) #* 255 + 1 # | |
# topic0[~mask0_nonzero] = -1 | |
topic1 = topic1[0].argmax(dim=-1, keepdim=True) #.float() / (n_topics - 1) #* 255 + 1 | |
# topic1[~mask1_nonzero] = -1 | |
label_img0, label_img1 = torch.zeros_like(topic0) - 1, torch.zeros_like(topic1) - 1 | |
for i, k in enumerate(top_topics): | |
label_img0[topic0 == k] = color_map[k] | |
label_img1[topic1 == k] = color_map[k] | |
# print(hw0_c, scale0) | |
# print(hw1_c, scale1) | |
# map_topic0 = F.fold(label_img0.unsqueeze(0), hw0_i, kernel_size=scale0, stride=scale0) | |
map_topic0 = label_img0.float().view(hw0_c).cpu().numpy() #map_topic0.squeeze(0).squeeze(0).cpu().numpy() | |
map_topic0 = cv2.resize(map_topic0, (int(hw0_c[1] * scale0[0]), int(hw0_c[0] * scale0[1]))) | |
# map_topic1 = F.fold(label_img1.unsqueeze(0), hw1_i, kernel_size=scale1, stride=scale1) | |
map_topic1 = label_img1.float().view(hw1_c).cpu().numpy() #map_topic1.squeeze(0).squeeze(0).cpu().numpy() | |
map_topic1 = cv2.resize(map_topic1, (int(hw1_c[1] * scale1[0]), int(hw1_c[0] * scale1[1]))) | |
# show image0 | |
if saved_name is None: | |
return map_topic0, map_topic1 | |
if not os.path.exists(saved_folder): | |
os.makedirs(saved_folder) | |
path_saved_img0 = os.path.join(saved_folder, "{}_0.png".format(saved_name)) | |
plt.imshow(img0) | |
masked_map_topic0 = np.ma.masked_where(map_topic0 < 0, map_topic0) | |
plt.imshow(masked_map_topic0, cmap=plt.cm.jet, vmin=0, vmax=n_topics-1, alpha=.3, interpolation='bilinear') | |
# plt.show() | |
plt.axis('off') | |
plt.savefig(path_saved_img0, bbox_inches='tight', pad_inches=0, dpi=250) | |
plt.close() | |
path_saved_img1 = os.path.join(saved_folder, "{}_1.png".format(saved_name)) | |
plt.imshow(img1) | |
masked_map_topic1 = np.ma.masked_where(map_topic1 < 0, map_topic1) | |
plt.imshow(masked_map_topic1, cmap=plt.cm.jet, vmin=0, vmax=n_topics-1, alpha=.3, interpolation='bilinear') | |
plt.axis('off') | |
plt.savefig(path_saved_img1, bbox_inches='tight', pad_inches=0, dpi=250) | |
plt.close() | |
def draw_topicfm_demo(data, img0, img1, mkpts0, mkpts1, mcolor, text, show_n_topics=8, | |
topic_alpha=0.3, margin=5, path=None, opencv_display=False, opencv_title=''): | |
topic_map0, topic_map1 = draw_topics(data, img0, img1, show_n_topics=show_n_topics) | |
mask_tm0, mask_tm1 = np.expand_dims(topic_map0 >= 0, axis=-1), np.expand_dims(topic_map1 >= 0, axis=-1) | |
topic_cm0, topic_cm1 = cm.jet(topic_map0 / 99.), cm.jet(topic_map1 / 99.) | |
topic_cm0 = cv2.cvtColor(topic_cm0[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR) | |
topic_cm1 = cv2.cvtColor(topic_cm1[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR) | |
overlay0 = (mask_tm0 * topic_cm0 + (1 - mask_tm0) * img0).astype(np.float32) | |
overlay1 = (mask_tm1 * topic_cm1 + (1 - mask_tm1) * img1).astype(np.float32) | |
cv2.addWeighted(overlay0, topic_alpha, img0, 1 - topic_alpha, 0, overlay0) | |
cv2.addWeighted(overlay1, topic_alpha, img1, 1 - topic_alpha, 0, overlay1) | |
overlay0, overlay1 = (overlay0 * 255).astype(np.uint8), (overlay1 * 255).astype(np.uint8) | |
h0, w0 = img0.shape[:2] | |
h1, w1 = img1.shape[:2] | |
h, w = h0 * 2 + margin * 2, w0 * 2 + margin | |
out_fig = 255 * np.ones((h, w, 3), dtype=np.uint8) | |
out_fig[:h0, :w0] = overlay0 | |
if h0 >= h1: | |
start = (h0 - h1) // 2 | |
out_fig[start:(start+h1), (w0+margin):(w0+margin+w1)] = overlay1 | |
else: | |
start = (h1 - h0) // 2 | |
out_fig[:h0, (w0+margin):(w0+margin+w1)] = overlay1[start:(start+h0)] | |
step_h = h0 + margin * 2 | |
out_fig[step_h:step_h+h0, :w0] = (img0 * 255).astype(np.uint8) | |
if h0 >= h1: | |
start = step_h + (h0 - h1) // 2 | |
out_fig[start:start+h1, (w0+margin):(w0+margin+w1)] = (img1 * 255).astype(np.uint8) | |
else: | |
start = (h1 - h0) // 2 | |
out_fig[step_h:step_h+h0, (w0+margin):(w0+margin+w1)] = (img1[start:start+h0] * 255).astype(np.uint8) | |
# draw matching lines, this is inspried from https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/master/models/utils.py | |
mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int) | |
mcolor = (np.array(mcolor[:, [2, 1, 0]]) * 255).astype(int) | |
for (x0, y0), (x1, y1), c in zip(mkpts0, mkpts1, mcolor): | |
c = c.tolist() | |
cv2.line(out_fig, (x0, y0+step_h), (x1+margin+w0, y1+step_h+(h0-h1)//2), | |
color=c, thickness=1, lineType=cv2.LINE_AA) | |
# display line end-points as circles | |
cv2.circle(out_fig, (x0, y0+step_h), 2, c, -1, lineType=cv2.LINE_AA) | |
cv2.circle(out_fig, (x1+margin+w0, y1+step_h+(h0-h1)//2), 2, c, -1, lineType=cv2.LINE_AA) | |
# Scale factor for consistent visualization across scales. | |
sc = min(h / 960., 2.0) | |
# Big text. | |
Ht = int(30 * sc) # text height | |
txt_color_fg = (255, 255, 255) | |
txt_color_bg = (0, 0, 0) | |
for i, t in enumerate(text): | |
cv2.putText(out_fig, t, (int(8 * sc), Ht + step_h*i), cv2.FONT_HERSHEY_DUPLEX, | |
1.0 * sc, txt_color_bg, 2, cv2.LINE_AA) | |
cv2.putText(out_fig, t, (int(8 * sc), Ht + step_h*i), cv2.FONT_HERSHEY_DUPLEX, | |
1.0 * sc, txt_color_fg, 1, cv2.LINE_AA) | |
if path is not None: | |
cv2.imwrite(str(path), out_fig) | |
if opencv_display: | |
cv2.imshow(opencv_title, out_fig) | |
cv2.waitKey(1) | |
return out_fig | |