Spaces:
Running
Running
from .transformations import quaternion_from_matrix | |
import numpy as np | |
import os | |
import sys | |
def evaluate_R_t(R_gt, t_gt, R, t): | |
t = t.flatten() | |
t_gt = t_gt.flatten() | |
eps = 1e-15 | |
q_gt = quaternion_from_matrix(R_gt) | |
q = quaternion_from_matrix(R) | |
q = q / (np.linalg.norm(q) + eps) | |
q_gt = q_gt / (np.linalg.norm(q_gt) + eps) | |
loss_q = np.maximum(eps, (1.0 - np.sum(q * q_gt)**2)) | |
err_q = np.arccos(1 - 2*loss_q) | |
t = t / (np.linalg.norm(t) + eps) | |
t_gt = t_gt / (np.linalg.norm(t_gt) + eps) | |
loss_t = np.maximum(eps, (1.0 - np.sum(t * t_gt)**2)) | |
err_t = np.arccos(np.sqrt(1 - loss_t)) | |
return np.rad2deg(err_q), np.rad2deg(err_t) | |
def pose_auc(errors, thresholds): | |
sort_idx = np.argsort(errors) | |
errors = np.array(errors.copy())[sort_idx] | |
recall = (np.arange(len(errors)) + 1) / len(errors) | |
errors = np.r_[0., errors] | |
recall = np.r_[0., recall] | |
aucs = [] | |
for t in thresholds[1:]: | |
last_index = np.searchsorted(errors, t) | |
r = np.r_[recall[:last_index], recall[last_index-1]] | |
e = np.r_[errors[:last_index], t] | |
aucs.append(np.trapz(r, x=e)/t) | |
return aucs | |
def approx_pose_auc(errors,thresholds): | |
qt_acc_hist, _ = np.histogram(errors, thresholds) | |
num_pair = float(len(errors)) | |
qt_acc_hist = qt_acc_hist.astype(float) / num_pair | |
qt_acc = np.cumsum(qt_acc_hist) | |
approx_aucs=[np.mean(qt_acc[:i]) for i in range(1, len(thresholds))] | |
return approx_aucs | |
def compute_epi_inlier(x1,x2,E,inlier_th): | |
num_pts1,num_pts2=x1.shape[0],x2.shape[0] | |
x1_h = np.concatenate([x1, np.ones([num_pts1, 1])], -1) | |
x2_h = np.concatenate([x2, np.ones([num_pts2, 1])], -1) | |
ep_line1 = x1_h@E.T | |
ep_line2= x2_h@E | |
norm_factor=(1/np.sqrt((ep_line1[:,:2]**2).sum(1))+1/np.sqrt((ep_line2[:,:2]**2).sum(1)))/2 | |
dis=abs((ep_line1*x2_h).sum(-1))*norm_factor | |
inlier_mask=dis<inlier_th | |
return inlier_mask |