Spaces:
Running
Running
import torch | |
from torch import nn | |
from torch.nn.parameter import Parameter | |
import torchvision.transforms as tvf | |
import torch.nn.functional as F | |
import numpy as np | |
def gather_nd(params, indices): | |
orig_shape = list(indices.shape) | |
num_samples = np.prod(orig_shape[:-1]) | |
m = orig_shape[-1] | |
n = len(params.shape) | |
if m <= n: | |
out_shape = orig_shape[:-1] + list(params.shape)[m:] | |
else: | |
raise ValueError( | |
f'the last dimension of indices must less or equal to the rank of params. Got indices:{indices.shape}, params:{params.shape}. {m} > {n}' | |
) | |
indices = indices.reshape((num_samples, m)).transpose(0, 1).tolist() | |
output = params[indices] # (num_samples, ...) | |
return output.reshape(out_shape).contiguous() | |
# input: pos [kpt_n, 2]; inputs [H, W, 128] / [H, W] | |
# output: [kpt_n, 128] / [kpt_n] | |
def interpolate(pos, inputs, nd=True): | |
h = inputs.shape[0] | |
w = inputs.shape[1] | |
i = pos[:, 0] | |
j = pos[:, 1] | |
i_top_left = torch.clamp(torch.floor(i).int(), 0, h - 1) | |
j_top_left = torch.clamp(torch.floor(j).int(), 0, w - 1) | |
i_top_right = torch.clamp(torch.floor(i).int(), 0, h - 1) | |
j_top_right = torch.clamp(torch.ceil(j).int(), 0, w - 1) | |
i_bottom_left = torch.clamp(torch.ceil(i).int(), 0, h - 1) | |
j_bottom_left = torch.clamp(torch.floor(j).int(), 0, w - 1) | |
i_bottom_right = torch.clamp(torch.ceil(i).int(), 0, h - 1) | |
j_bottom_right = torch.clamp(torch.ceil(j).int(), 0, w - 1) | |
dist_i_top_left = i - i_top_left.float() | |
dist_j_top_left = j - j_top_left.float() | |
w_top_left = (1 - dist_i_top_left) * (1 - dist_j_top_left) | |
w_top_right = (1 - dist_i_top_left) * dist_j_top_left | |
w_bottom_left = dist_i_top_left * (1 - dist_j_top_left) | |
w_bottom_right = dist_i_top_left * dist_j_top_left | |
if nd: | |
w_top_left = w_top_left[..., None] | |
w_top_right = w_top_right[..., None] | |
w_bottom_left = w_bottom_left[..., None] | |
w_bottom_right = w_bottom_right[..., None] | |
interpolated_val = ( | |
w_top_left * gather_nd(inputs, torch.stack([i_top_left, j_top_left], axis=-1)) + | |
w_top_right * gather_nd(inputs, torch.stack([i_top_right, j_top_right], axis=-1)) + | |
w_bottom_left * gather_nd(inputs, torch.stack([i_bottom_left, j_bottom_left], axis=-1)) + | |
w_bottom_right * | |
gather_nd(inputs, torch.stack([i_bottom_right, j_bottom_right], axis=-1)) | |
) | |
return interpolated_val | |
def edge_mask(inputs, n_channel, dilation=1, edge_thld=5): | |
b, c, h, w = inputs.size() | |
device = inputs.device | |
dii_filter = torch.tensor( | |
[[0, 1., 0], [0, -2., 0], [0, 1., 0]] | |
).view(1, 1, 3, 3) | |
dij_filter = 0.25 * torch.tensor( | |
[[1., 0, -1.], [0, 0., 0], [-1., 0, 1.]] | |
).view(1, 1, 3, 3) | |
djj_filter = torch.tensor( | |
[[0, 0, 0], [1., -2., 1.], [0, 0, 0]] | |
).view(1, 1, 3, 3) | |
dii = F.conv2d( | |
inputs.view(-1, 1, h, w), dii_filter.to(device), padding=dilation, dilation=dilation | |
).view(b, c, h, w) | |
dij = F.conv2d( | |
inputs.view(-1, 1, h, w), dij_filter.to(device), padding=dilation, dilation=dilation | |
).view(b, c, h, w) | |
djj = F.conv2d( | |
inputs.view(-1, 1, h, w), djj_filter.to(device), padding=dilation, dilation=dilation | |
).view(b, c, h, w) | |
det = dii * djj - dij * dij | |
tr = dii + djj | |
del dii, dij, djj | |
threshold = (edge_thld + 1) ** 2 / edge_thld | |
is_not_edge = torch.min(tr * tr / det <= threshold, det > 0) | |
return is_not_edge | |
# input: score_map [batch_size, 1, H, W] | |
# output: indices [2, k, 2], scores [2, k] | |
def extract_kpts(score_map, k=256, score_thld=0, edge_thld=0, nms_size=3, eof_size=5): | |
h = score_map.shape[2] | |
w = score_map.shape[3] | |
mask = score_map > score_thld | |
if nms_size > 0: | |
nms_mask = F.max_pool2d(score_map, kernel_size=nms_size, stride=1, padding=nms_size//2) | |
nms_mask = torch.eq(score_map, nms_mask) | |
mask = torch.logical_and(nms_mask, mask) | |
if eof_size > 0: | |
eof_mask = torch.ones((1, 1, h - 2 * eof_size, w - 2 * eof_size), dtype=torch.float32, device=score_map.device) | |
eof_mask = F.pad(eof_mask, [eof_size] * 4, value=0) | |
eof_mask = eof_mask.bool() | |
mask = torch.logical_and(eof_mask, mask) | |
if edge_thld > 0: | |
non_edge_mask = edge_mask(score_map, 1, dilation=3, edge_thld=edge_thld) | |
mask = torch.logical_and(non_edge_mask, mask) | |
bs = score_map.shape[0] | |
if bs is None: | |
indices = torch.nonzero(mask)[0] | |
scores = gather_nd(score_map, indices)[0] | |
sample = torch.sort(scores, descending=True)[1][0:k] | |
indices = indices[sample].unsqueeze(0) | |
scores = scores[sample].unsqueeze(0) | |
else: | |
indices = [] | |
scores = [] | |
for i in range(bs): | |
tmp_mask = mask[i][0] | |
tmp_score_map = score_map[i][0] | |
tmp_indices = torch.nonzero(tmp_mask) | |
tmp_scores = gather_nd(tmp_score_map, tmp_indices) | |
tmp_sample = torch.sort(tmp_scores, descending=True)[1][0:k] | |
tmp_indices = tmp_indices[tmp_sample] | |
tmp_scores = tmp_scores[tmp_sample] | |
indices.append(tmp_indices) | |
scores.append(tmp_scores) | |
try: | |
indices = torch.stack(indices, dim=0) | |
scores = torch.stack(scores, dim=0) | |
except: | |
min_num = np.min([len(i) for i in indices]) | |
indices = torch.stack([i[:min_num] for i in indices], dim=0) | |
scores = torch.stack([i[:min_num] for i in scores], dim=0) | |
return indices, scores | |
# input: [batch_size, C, H, W] | |
# output: [batch_size, C, H, W], [batch_size, C, H, W] | |
def peakiness_score(inputs, moving_instance_max, ksize=3, dilation=1): | |
inputs = inputs / moving_instance_max | |
batch_size, C, H, W = inputs.shape | |
pad_size = ksize // 2 + (dilation - 1) | |
kernel = torch.ones([C, 1, ksize, ksize], device=inputs.device) / (ksize * ksize) | |
pad_inputs = F.pad(inputs, [pad_size] * 4, mode='reflect') | |
avg_spatial_inputs = F.conv2d( | |
pad_inputs, | |
kernel, | |
stride=1, | |
dilation=dilation, | |
padding=0, | |
groups=C | |
) | |
avg_channel_inputs = torch.mean(inputs, axis=1, keepdim=True) # channel dimension is 1 | |
# print(avg_spatial_inputs.shape) | |
alpha = F.softplus(inputs - avg_spatial_inputs) | |
beta = F.softplus(inputs - avg_channel_inputs) | |
return alpha, beta | |
class DarkFeat(nn.Module): | |
default_config = { | |
'model_path': '', | |
'input_type': 'raw-demosaic', | |
'kpt_n': 5000, | |
'kpt_refinement': True, | |
'score_thld': 0.5, | |
'edge_thld': 10, | |
'multi_scale': False, | |
'multi_level': True, | |
'nms_size': 3, | |
'eof_size': 5, | |
'need_norm': True, | |
'use_peakiness': True | |
} | |
def __init__(self, model_path='', inchan=3, dilated=True, dilation=1, bn=True, bn_affine=False): | |
super(DarkFeat, self).__init__() | |
inchan = 3 if self.default_config['input_type'] == 'rgb' or self.default_config['input_type'] == 'raw-demosaic' else 1 | |
self.config = {**self.default_config} | |
self.inchan = inchan | |
self.curchan = inchan | |
self.dilated = dilated | |
self.dilation = dilation | |
self.bn = bn | |
self.bn_affine = bn_affine | |
self.config['model_path'] = model_path | |
dim = 128 | |
mchan = 4 | |
self.conv0 = self._add_conv( 8*mchan) | |
self.conv1 = self._add_conv( 8*mchan, bn=False) | |
self.bn1 = self._make_bn(8*mchan) | |
self.conv2 = self._add_conv( 16*mchan, stride=2) | |
self.conv3 = self._add_conv( 16*mchan, bn=False) | |
self.bn3 = self._make_bn(16*mchan) | |
self.conv4 = self._add_conv( 32*mchan, stride=2) | |
self.conv5 = self._add_conv( 32*mchan) | |
# replace last 8x8 convolution with 3 3x3 convolutions | |
self.conv6_0 = self._add_conv( 32*mchan) | |
self.conv6_1 = self._add_conv( 32*mchan) | |
self.conv6_2 = self._add_conv(dim, bn=False, relu=False) | |
self.out_dim = dim | |
self.moving_avg_params = nn.ParameterList([ | |
Parameter(torch.tensor(1.), requires_grad=False), | |
Parameter(torch.tensor(1.), requires_grad=False), | |
Parameter(torch.tensor(1.), requires_grad=False) | |
]) | |
self.clf = nn.Conv2d(128, 2, kernel_size=1) | |
state_dict = torch.load(self.config["model_path"]) | |
new_state_dict = {} | |
for key in state_dict: | |
if 'running_mean' not in key and 'running_var' not in key and 'num_batches_tracked' not in key: | |
new_state_dict[key] = state_dict[key] | |
self.load_state_dict(new_state_dict) | |
print('Loaded DarkFeat model') | |
def _make_bn(self, outd): | |
return nn.BatchNorm2d(outd, affine=self.bn_affine, track_running_stats=False) | |
def _add_conv(self, outd, k=3, stride=1, dilation=1, bn=True, relu=True, k_pool = 1, pool_type='max', bias=False): | |
d = self.dilation * dilation | |
conv_params = dict(padding=((k-1)*d)//2, dilation=d, stride=stride, bias=bias) | |
ops = nn.ModuleList([]) | |
ops.append( nn.Conv2d(self.curchan, outd, kernel_size=k, **conv_params) ) | |
if bn and self.bn: ops.append( self._make_bn(outd) ) | |
if relu: ops.append( nn.ReLU(inplace=True) ) | |
self.curchan = outd | |
if k_pool > 1: | |
if pool_type == 'avg': | |
ops.append(torch.nn.AvgPool2d(kernel_size=k_pool)) | |
elif pool_type == 'max': | |
ops.append(torch.nn.MaxPool2d(kernel_size=k_pool)) | |
else: | |
print(f"Error, unknown pooling type {pool_type}...") | |
return nn.Sequential(*ops) | |
def forward(self, input): | |
""" Compute keypoints, scores, descriptors for image """ | |
data = input['image'] | |
H, W = data.shape[2:] | |
if self.config['input_type'] == 'rgb': | |
# 3-channel rgb | |
RGB_mean = [0.485, 0.456, 0.406] | |
RGB_std = [0.229, 0.224, 0.225] | |
norm_RGB = tvf.Normalize(mean=RGB_mean, std=RGB_std) | |
data = norm_RGB(data) | |
elif self.config['input_type'] == 'gray': | |
# 1-channel | |
data = torch.mean(data, dim=1, keepdim=True) | |
norm_gray0 = tvf.Normalize(mean=data.mean(), std=data.std()) | |
data = norm_gray0(data) | |
elif self.config['input_type'] == 'raw': | |
# 4-channel | |
pass | |
elif self.config['input_type'] == 'raw-demosaic': | |
# 3-channel | |
pass | |
else: | |
raise NotImplementedError() | |
# x: [N, C, H, W] | |
x0 = self.conv0(data) | |
x1 = self.conv1(x0) | |
x1_bn = self.bn1(x1) | |
x2 = self.conv2(x1_bn) | |
x3 = self.conv3(x2) | |
x3_bn = self.bn3(x3) | |
x4 = self.conv4(x3_bn) | |
x5 = self.conv5(x4) | |
x6_0 = self.conv6_0(x5) | |
x6_1 = self.conv6_1(x6_0) | |
x6_2 = self.conv6_2(x6_1) | |
comb_weights = torch.tensor([1., 2., 3.], device=data.device) | |
comb_weights /= torch.sum(comb_weights) | |
ksize = [3, 2, 1] | |
det_score_maps = [] | |
for idx, xx in enumerate([x1, x3, x6_2]): | |
alpha, beta = peakiness_score(xx, self.moving_avg_params[idx].detach(), ksize=3, dilation=ksize[idx]) | |
score_vol = alpha * beta | |
det_score_map = torch.max(score_vol, dim=1, keepdim=True)[0] | |
det_score_map = F.interpolate(det_score_map, size=data.shape[2:], mode='bilinear', align_corners=True) | |
det_score_map = comb_weights[idx] * det_score_map | |
det_score_maps.append(det_score_map) | |
det_score_map = torch.sum(torch.stack(det_score_maps, dim=0), dim=0) | |
desc = x6_2 | |
score_map = det_score_map | |
conf = F.softmax(self.clf((desc)**2), dim=1)[:,1:2] | |
score_map = score_map * F.interpolate(conf, size=score_map.shape[2:], mode='bilinear', align_corners=True) | |
kpt_inds, kpt_score = extract_kpts( | |
score_map, | |
k=self.config['kpt_n'], | |
score_thld=self.config['score_thld'], | |
nms_size=self.config['nms_size'], | |
eof_size=self.config['eof_size'], | |
edge_thld=self.config['edge_thld'] | |
) | |
descs = F.normalize( | |
interpolate(kpt_inds.squeeze(0) / 4, desc.squeeze(0).permute(1, 2, 0)), | |
p=2, | |
dim=-1 | |
).detach().cpu().numpy(), | |
kpts = np.squeeze(torch.stack([kpt_inds[:, :, 1], kpt_inds[:, :, 0]], dim=-1).cpu(), axis=0) \ | |
* np.array([W / data.shape[3], H / data.shape[2]], dtype=np.float32) | |
scores = np.squeeze(kpt_score.detach().cpu().numpy(), axis=0) | |
idxs = np.negative(scores).argsort()[0:self.config['kpt_n']] | |
descs = descs[0][idxs] | |
kpts = kpts[idxs] | |
scores = scores[idxs] | |
return { | |
'keypoints': kpts, | |
'scores': torch.from_numpy(scores), | |
'descriptors': torch.from_numpy(descs.T), | |
} | |