Spaces:
Running
Running
from pathlib import Path | |
import time | |
from collections import OrderedDict | |
import numpy as np | |
import cv2 | |
import rawpy | |
import torch | |
import colour_demosaicing | |
class AverageTimer: | |
"""Class to help manage printing simple timing of code execution.""" | |
def __init__(self, smoothing=0.3, newline=False): | |
self.smoothing = smoothing | |
self.newline = newline | |
self.times = OrderedDict() | |
self.will_print = OrderedDict() | |
self.reset() | |
def reset(self): | |
now = time.time() | |
self.start = now | |
self.last_time = now | |
for name in self.will_print: | |
self.will_print[name] = False | |
def update(self, name="default"): | |
now = time.time() | |
dt = now - self.last_time | |
if name in self.times: | |
dt = self.smoothing * dt + (1 - self.smoothing) * self.times[name] | |
self.times[name] = dt | |
self.will_print[name] = True | |
self.last_time = now | |
def print(self, text="Timer"): | |
total = 0.0 | |
print("[{}]".format(text), end=" ") | |
for key in self.times: | |
val = self.times[key] | |
if self.will_print[key]: | |
print("%s=%.3f" % (key, val), end=" ") | |
total += val | |
print("total=%.3f sec {%.1f FPS}" % (total, 1.0 / total), end=" ") | |
if self.newline: | |
print(flush=True) | |
else: | |
print(end="\r", flush=True) | |
self.reset() | |
class VideoStreamer: | |
def __init__(self, basedir, resize, image_glob): | |
self.listing = [] | |
self.resize = resize | |
self.i = 0 | |
if Path(basedir).is_dir(): | |
print("==> Processing image directory input: {}".format(basedir)) | |
self.listing = list(Path(basedir).glob(image_glob[0])) | |
for j in range(1, len(image_glob)): | |
image_path = list(Path(basedir).glob(image_glob[j])) | |
self.listing = self.listing + image_path | |
self.listing.sort() | |
if len(self.listing) == 0: | |
raise IOError("No images found (maybe bad 'image_glob' ?)") | |
self.max_length = len(self.listing) | |
else: | |
raise ValueError('VideoStreamer input "{}" not recognized.'.format(basedir)) | |
def load_image(self, impath): | |
raw = rawpy.imread(str(impath)).raw_image_visible | |
raw = np.clip(raw.astype("float32") - 512, 0, 65535) | |
img = colour_demosaicing.demosaicing_CFA_Bayer_bilinear(raw, "RGGB").astype( | |
"float32" | |
) | |
img = np.clip(img, 0, 16383) | |
m = img.mean() | |
d = np.abs(img - img.mean()).mean() | |
img = (img - m + 2 * d) / 4 / d * 255 | |
image = np.clip(img, 0, 255) | |
w_new, h_new = self.resize[0], self.resize[1] | |
im = cv2.resize( | |
image.astype("float32"), (w_new, h_new), interpolation=cv2.INTER_AREA | |
) | |
return im | |
def next_frame(self): | |
if self.i == self.max_length: | |
return (None, False) | |
image_file = str(self.listing[self.i]) | |
image = self.load_image(image_file) | |
self.i = self.i + 1 | |
return (image, True) | |
def frame2tensor(frame, device): | |
if len(frame.shape) == 2: | |
return torch.from_numpy(frame / 255.0).float()[None, None].to(device) | |
else: | |
return torch.from_numpy(frame / 255.0).float().permute(2, 0, 1)[None].to(device) | |
def make_matching_plot_fast( | |
image0, | |
image1, | |
mkpts0, | |
mkpts1, | |
color, | |
text, | |
path=None, | |
margin=10, | |
opencv_display=False, | |
opencv_title="", | |
small_text=[], | |
): | |
H0, W0 = image0.shape[:2] | |
H1, W1 = image1.shape[:2] | |
H, W = max(H0, H1), W0 + W1 + margin | |
out = 255 * np.ones((H, W, 3), np.uint8) | |
out[:H0, :W0, :] = image0 | |
out[:H1, W0 + margin :, :] = image1 | |
# Scale factor for consistent visualization across scales. | |
sc = min(H / 640.0, 2.0) | |
# Big text. | |
Ht = int(30 * sc) # text height | |
txt_color_fg = (255, 255, 255) | |
txt_color_bg = (0, 0, 0) | |
for i, t in enumerate(text): | |
cv2.putText( | |
out, | |
t, | |
(int(8 * sc), Ht * (i + 1)), | |
cv2.FONT_HERSHEY_DUPLEX, | |
1.0 * sc, | |
txt_color_bg, | |
2, | |
cv2.LINE_AA, | |
) | |
cv2.putText( | |
out, | |
t, | |
(int(8 * sc), Ht * (i + 1)), | |
cv2.FONT_HERSHEY_DUPLEX, | |
1.0 * sc, | |
txt_color_fg, | |
1, | |
cv2.LINE_AA, | |
) | |
out_backup = out.copy() | |
mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int) | |
color = (np.array(color[:, :3]) * 255).astype(int)[:, ::-1] | |
for (x0, y0), (x1, y1), c in zip(mkpts0, mkpts1, color): | |
c = c.tolist() | |
cv2.line( | |
out, | |
(x0, y0), | |
(x1 + margin + W0, y1), | |
color=c, | |
thickness=1, | |
lineType=cv2.LINE_AA, | |
) | |
# display line end-points as circles | |
cv2.circle(out, (x0, y0), 2, c, -1, lineType=cv2.LINE_AA) | |
cv2.circle(out, (x1 + margin + W0, y1), 2, c, -1, lineType=cv2.LINE_AA) | |
# Small text. | |
Ht = int(18 * sc) # text height | |
for i, t in enumerate(reversed(small_text)): | |
cv2.putText( | |
out, | |
t, | |
(int(8 * sc), int(H - Ht * (i + 0.6))), | |
cv2.FONT_HERSHEY_DUPLEX, | |
0.5 * sc, | |
txt_color_bg, | |
2, | |
cv2.LINE_AA, | |
) | |
cv2.putText( | |
out, | |
t, | |
(int(8 * sc), int(H - Ht * (i + 0.6))), | |
cv2.FONT_HERSHEY_DUPLEX, | |
0.5 * sc, | |
txt_color_fg, | |
1, | |
cv2.LINE_AA, | |
) | |
if path is not None: | |
cv2.imwrite(str(path), out) | |
if opencv_display: | |
cv2.imshow(opencv_title, out) | |
cv2.waitKey(1) | |
return out / 2 + out_backup / 2 | |