Spaces:
Running
Running
#!/usr/bin/env python3 | |
# Copyright 2024 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Demo script for performing OmniGlue inference.""" | |
import sys | |
import time | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from src import omniglue | |
from src.omniglue import utils | |
from PIL import Image | |
def main(argv) -> None: | |
if len(argv) != 3: | |
print("error - usage: python demo.py <img1_fp> <img2_fp>") | |
return | |
# Load images. | |
print("> Loading images...") | |
image0 = np.array(Image.open(argv[1])) | |
image1 = np.array(Image.open(argv[2])) | |
# Load models. | |
print("> Loading OmniGlue (and its submodules: SuperPoint & DINOv2)...") | |
start = time.time() | |
og = omniglue.OmniGlue( | |
og_export="./models/omniglue.onnx", | |
sp_export="./models/sp_v6.onnx", | |
dino_export="./models/dinov2_vitb14_pretrain.pth", | |
) | |
print(f"> \tTook {time.time() - start} seconds.") | |
# Perform inference. | |
print("> Finding matches...") | |
start = time.time() | |
match_kp0, match_kp1, match_confidences = og.FindMatches(image0, image1) | |
num_matches = match_kp0.shape[0] | |
print(f"> \tFound {num_matches} matches.") | |
print(f"> \tTook {time.time() - start} seconds.") | |
# Filter by confidence (0.02). | |
print("> Filtering matches...") | |
match_threshold = 0.02 # Choose any value [0.0, 1.0). | |
keep_idx = [] | |
for i in range(match_kp0.shape[0]): | |
if match_confidences[i] > match_threshold: | |
keep_idx.append(i) | |
num_filtered_matches = len(keep_idx) | |
match_kp0 = match_kp0[keep_idx] | |
match_kp1 = match_kp1[keep_idx] | |
match_confidences = match_confidences[keep_idx] | |
print( | |
f"> \tFound {num_filtered_matches}/{num_matches} above threshold {match_threshold}" | |
) | |
# Visualize. | |
print("> Visualizing matches...") | |
viz = utils.visualize_matches( | |
image0, | |
image1, | |
match_kp0, | |
match_kp1, | |
np.eye(num_filtered_matches), | |
show_keypoints=True, | |
highlight_unmatched=True, | |
title=f"{num_filtered_matches} matches", | |
line_width=2, | |
) | |
plt.figure(figsize=(20, 10), dpi=100, facecolor="w", edgecolor="k") | |
plt.axis("off") | |
plt.imshow(viz) | |
plt.imsave("./demo_output.png", viz) | |
print("> \tSaved visualization to ./demo_output.png") | |
if __name__ == "__main__": | |
main(sys.argv) | |