Spaces:
Running
Running
import torch | |
from torch import nn | |
class NN2(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, data): | |
desc1, desc2 = data["descriptors0"].cuda(), data["descriptors1"].cuda() | |
kpts1, kpts2 = data["keypoints0"].cuda(), data["keypoints1"].cuda() | |
# torch.cuda.synchronize() | |
# t = time.time() | |
if kpts1.shape[1] <= 1 or kpts2.shape[1] <= 1: # no keypoints | |
shape0, shape1 = kpts1.shape[:-1], kpts2.shape[:-1] | |
return { | |
"matches0": kpts1.new_full(shape0, -1, dtype=torch.int), | |
"matches1": kpts2.new_full(shape1, -1, dtype=torch.int), | |
"matching_scores0": kpts1.new_zeros(shape0), | |
"matching_scores1": kpts2.new_zeros(shape1), | |
} | |
sim = torch.matmul(desc1.squeeze().T, desc2.squeeze()) | |
ids1 = torch.arange(0, sim.shape[0], device=desc1.device) | |
nn12 = torch.argmax(sim, dim=1) | |
nn21 = torch.argmax(sim, dim=0) | |
mask = torch.eq(ids1, nn21[nn12]) | |
matches = torch.stack( | |
[torch.masked_select(ids1, mask), torch.masked_select(nn12, mask)] | |
) | |
# matches = torch.stack([ids1, nn12]) | |
indices0 = torch.ones((1, desc1.shape[-1]), dtype=int) * -1 | |
mscores0 = torch.ones((1, desc1.shape[-1]), dtype=float) * -1 | |
# torch.cuda.synchronize() | |
# print(time.time() - t) | |
matches_0 = matches[0].cpu().int().numpy() | |
matches_1 = matches[1].cpu().int() | |
for i in range(matches.shape[-1]): | |
indices0[0, matches_0[i]] = matches_1[i].int() | |
mscores0[0, matches_0[i]] = sim[matches_0[i], matches_1[i]] | |
return { | |
"matches0": indices0, # use -1 for invalid match | |
"matches1": indices0, # use -1 for invalid match | |
"matching_scores0": mscores0, | |
"matching_scores1": mscores0, | |
} | |