Spaces:
Running
Running
import sys | |
from pathlib import Path | |
import torch | |
from hloc import logger | |
from ..utils.base_model import BaseModel | |
rekd_path = Path(__file__).parent / "../../third_party" | |
sys.path.append(str(rekd_path)) | |
from REKD.training.model.REKD import REKD as REKD_ | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class REKD(BaseModel): | |
default_conf = { | |
"model_name": "v0", | |
"keypoint_threshold": 0.1, | |
} | |
required_inputs = ["image"] | |
def _init(self, conf): | |
model_path = ( | |
rekd_path / "checkpoints" / f'PointModel_{conf["model_name"]}.pth' | |
) | |
if not model_path.exists(): | |
print(f"No model found at {model_path}") | |
self.net = REKD_(is_test=True) | |
state_dict = torch.load(model_path, map_location="cpu") | |
self.net.load_state_dict(state_dict["model_state"]) | |
logger.info("Load REKD model done.") | |
def _forward(self, data): | |
image = data["image"] | |
keypoints, scores, descriptors = self.net(image) | |
_, _, Hc, Wc = descriptors.shape | |
# Scores & Descriptors | |
kpts_score = ( | |
torch.cat([keypoints, scores], dim=1) | |
.view(3, -1) | |
.t() | |
.cpu() | |
.detach() | |
.numpy() | |
) | |
descriptors = ( | |
descriptors.view(256, Hc, Wc) | |
.view(256, -1) | |
.t() | |
.cpu() | |
.detach() | |
.numpy() | |
) | |
# Filter based on confidence threshold | |
descriptors = descriptors[ | |
kpts_score[:, 0] > self.conf["keypoint_threshold"], : | |
] | |
kpts_score = kpts_score[ | |
kpts_score[:, 0] > self.conf["keypoint_threshold"], : | |
] | |
keypoints = kpts_score[:, 1:] | |
scores = kpts_score[:, 0] | |
return { | |
"keypoints": torch.from_numpy(keypoints)[None], | |
"scores": torch.from_numpy(scores)[None], | |
"descriptors": torch.from_numpy(descriptors.T)[None], | |
} | |