Spaces:
Running
on
Zero
Running
on
Zero
| ''' | |
| Feature-free COTR guided matching for keypoints. | |
| We use DISK(https://github.com/cvlab-epfl/disk) keypoints location. | |
| We apply RANSAC + F matrix to further prune outliers. | |
| Note: This script doesn't use descriptors. | |
| ''' | |
| import argparse | |
| import os | |
| import time | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import imageio | |
| from scipy.spatial import distance_matrix | |
| from COTR.utils import utils, debug_utils | |
| from COTR.models import build_model | |
| from COTR.options.options import * | |
| from COTR.options.options_utils import * | |
| from COTR.inference.sparse_engine import SparseEngine, FasterSparseEngine | |
| utils.fix_randomness(0) | |
| torch.set_grad_enabled(False) | |
| def main(opt): | |
| model = build_model(opt) | |
| model = model.cuda() | |
| weights = torch.load(opt.load_weights_path)['model_state_dict'] | |
| utils.safe_load_weights(model, weights) | |
| model = model.eval() | |
| img_a = imageio.imread('./sample_data/imgs/21526113_4379776807.jpg') | |
| img_b = imageio.imread('./sample_data/imgs/21126421_4537535153.jpg') | |
| kp_a = np.load('./sample_data/21526113_4379776807.jpg.disk.kpts.npy') | |
| kp_b = np.load('./sample_data/21126421_4537535153.jpg.disk.kpts.npy') | |
| if opt.faster_infer: | |
| engine = FasterSparseEngine(model, 32, mode='tile') | |
| else: | |
| engine = SparseEngine(model, 32, mode='tile') | |
| t0 = time.time() | |
| corrs_a_b = engine.cotr_corr_multiscale(img_a, img_b, np.linspace(0.5, 0.0625, 4), 1, max_corrs=kp_a.shape[0], queries_a=kp_a, force=True) | |
| corrs_b_a = engine.cotr_corr_multiscale(img_b, img_a, np.linspace(0.5, 0.0625, 4), 1, max_corrs=kp_b.shape[0], queries_a=kp_b, force=True) | |
| t1 = time.time() | |
| print(f'COTR spent {t1-t0} seconds.') | |
| inds_a_b = np.argmin(distance_matrix(corrs_a_b[:, 2:], kp_b), axis=1) | |
| matched_a_b = np.stack([np.arange(kp_a.shape[0]), inds_a_b]).T | |
| inds_b_a = np.argmin(distance_matrix(corrs_b_a[:, 2:], kp_a), axis=1) | |
| matched_b_a = np.stack([np.arange(kp_b.shape[0]), inds_b_a]).T | |
| good = 0 | |
| final_matches = [] | |
| for m_ab in matched_a_b: | |
| for m_ba in matched_b_a: | |
| if (m_ab == m_ba[::-1]).all(): | |
| good += 1 | |
| final_matches.append(m_ab) | |
| break | |
| final_matches = np.array(final_matches) | |
| final_corrs = np.concatenate([kp_a[final_matches[:, 0]], kp_b[final_matches[:, 1]]], axis=1) | |
| _, mask = cv2.findFundamentalMat(final_corrs[:, :2], final_corrs[:, 2:], cv2.FM_RANSAC, ransacReprojThreshold=5, confidence=0.999999) | |
| utils.visualize_corrs(img_a, img_b, final_corrs[np.where(mask[:, 0])]) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| set_COTR_arguments(parser) | |
| parser.add_argument('--out_dir', type=str, default=general_config['out'], help='out directory') | |
| parser.add_argument('--load_weights', type=str, default=None, help='load a pretrained set of weights, you need to provide the model id') | |
| parser.add_argument('--faster_infer', type=str2bool, default=False, help='use fatser inference') | |
| opt = parser.parse_args() | |
| opt.command = ' '.join(sys.argv) | |
| layer_2_channels = {'layer1': 256, | |
| 'layer2': 512, | |
| 'layer3': 1024, | |
| 'layer4': 2048, } | |
| opt.dim_feedforward = layer_2_channels[opt.layer] | |
| if opt.load_weights: | |
| opt.load_weights_path = os.path.join(opt.out_dir, opt.load_weights, 'checkpoint.pth.tar') | |
| print_opt(opt) | |
| main(opt) | |