Spaces:
Running
Running
from typing import Tuple | |
import numpy as np | |
import torch | |
def to_homogeneous(points): | |
"""Convert N-dimensional points to homogeneous coordinates. | |
Args: | |
points: torch.Tensor or numpy.ndarray with size (..., N). | |
Returns: | |
A torch.Tensor or numpy.ndarray with size (..., N+1). | |
""" | |
if isinstance(points, torch.Tensor): | |
pad = points.new_ones(points.shape[:-1] + (1,)) | |
return torch.cat([points, pad], dim=-1) | |
elif isinstance(points, np.ndarray): | |
pad = np.ones((points.shape[:-1] + (1,)), dtype=points.dtype) | |
return np.concatenate([points, pad], axis=-1) | |
else: | |
raise ValueError | |
def from_homogeneous(points, eps=0.0): | |
"""Remove the homogeneous dimension of N-dimensional points. | |
Args: | |
points: torch.Tensor or numpy.ndarray with size (..., N+1). | |
Returns: | |
A torch.Tensor or numpy ndarray with size (..., N). | |
""" | |
return points[..., :-1] / (points[..., -1:] + eps) | |
def skew_symmetric(v): | |
"""Create a skew-symmetric matrix from a (batched) vector of size (..., 3).""" | |
z = torch.zeros_like(v[..., 0]) | |
M = torch.stack( | |
[ | |
z, | |
-v[..., 2], | |
v[..., 1], | |
v[..., 2], | |
z, | |
-v[..., 0], | |
-v[..., 1], | |
v[..., 0], | |
z, | |
], | |
dim=-1, | |
).reshape(v.shape[:-1] + (3, 3)) | |
return M | |
def T_to_E(T): | |
"""Convert batched poses (..., 4, 4) to batched essential matrices.""" | |
return skew_symmetric(T[..., :3, 3]) @ T[..., :3, :3] | |
def warp_points_torch(points, H, inverse=True): | |
""" | |
Warp a list of points with the INVERSE of the given homography. | |
The inverse is used to be coherent with tf.contrib.image.transform | |
Arguments: | |
points: batched list of N points, shape (B, N, 2). | |
homography: batched or not (shapes (B, 8) and (8,) respectively). | |
Returns: a Tensor of shape (B, N, 2) containing the new coordinates of the warped points. | |
""" | |
# H = np.expand_dims(homography, axis=0) if len(homography.shape) == 1 else homography | |
# Get the points to the homogeneous format | |
points = to_homogeneous(points) | |
# Apply the homography | |
out_shape = tuple(list(H.shape[:-1]) + [3, 3]) | |
H_mat = torch.cat([H, torch.ones_like(H[..., :1])], axis=-1).reshape(out_shape) | |
if inverse: | |
H_mat = torch.inverse(H_mat) | |
warped_points = torch.einsum("...nj,...ji->...ni", points, H_mat.transpose(-2, -1)) | |
warped_points = from_homogeneous(warped_points, eps=1e-5) | |
return warped_points | |
def seg_equation(segs): | |
# calculate list of start, end and midpoints points from both lists | |
start_points, end_points = to_homogeneous(segs[..., 0, :]), to_homogeneous( | |
segs[..., 1, :] | |
) | |
# Compute the line equations as ax + by + c = 0 , where x^2 + y^2 = 1 | |
lines = torch.cross(start_points, end_points, dim=-1) | |
lines_norm = torch.sqrt(lines[..., 0] ** 2 + lines[..., 1] ** 2)[..., None] | |
assert torch.all( | |
lines_norm > 0 | |
), "Error: trying to compute the equation of a line with a single point" | |
lines = lines / lines_norm | |
return lines | |
def is_inside_img(pts: torch.Tensor, img_shape: Tuple[int, int]): | |
h, w = img_shape | |
return ( | |
(pts >= 0).all(dim=-1) | |
& (pts[..., 0] < w) | |
& (pts[..., 1] < h) | |
& (~torch.isinf(pts).any(dim=-1)) | |
) | |
def shrink_segs_to_img(segs: torch.Tensor, img_shape: Tuple[int, int]) -> torch.Tensor: | |
""" | |
Shrink an array of segments to fit inside the image. | |
:param segs: The tensor of segments with shape (N, 2, 2) | |
:param img_shape: The image shape in format (H, W) | |
""" | |
EPS = 1e-4 | |
device = segs.device | |
w, h = img_shape[1], img_shape[0] | |
# Project the segments to the reference image | |
segs = segs.clone() | |
eqs = seg_equation(segs) | |
x0, y0 = torch.tensor([1.0, 0, 0.0], device=device), torch.tensor( | |
[0.0, 1, 0], device=device | |
) | |
x0 = x0.repeat(eqs.shape[:-1] + (1,)) | |
y0 = y0.repeat(eqs.shape[:-1] + (1,)) | |
pt_x0s = torch.cross(eqs, x0, dim=-1) | |
pt_x0s = pt_x0s[..., :-1] / pt_x0s[..., None, -1] | |
pt_x0s_valid = is_inside_img(pt_x0s, img_shape) | |
pt_y0s = torch.cross(eqs, y0, dim=-1) | |
pt_y0s = pt_y0s[..., :-1] / pt_y0s[..., None, -1] | |
pt_y0s_valid = is_inside_img(pt_y0s, img_shape) | |
xW, yH = torch.tensor([1.0, 0, EPS - w], device=device), torch.tensor( | |
[0.0, 1, EPS - h], device=device | |
) | |
xW = xW.repeat(eqs.shape[:-1] + (1,)) | |
yH = yH.repeat(eqs.shape[:-1] + (1,)) | |
pt_xWs = torch.cross(eqs, xW, dim=-1) | |
pt_xWs = pt_xWs[..., :-1] / pt_xWs[..., None, -1] | |
pt_xWs_valid = is_inside_img(pt_xWs, img_shape) | |
pt_yHs = torch.cross(eqs, yH, dim=-1) | |
pt_yHs = pt_yHs[..., :-1] / pt_yHs[..., None, -1] | |
pt_yHs_valid = is_inside_img(pt_yHs, img_shape) | |
# If the X coordinate of the first endpoint is out | |
mask = (segs[..., 0, 0] < 0) & pt_x0s_valid | |
segs[mask, 0, :] = pt_x0s[mask] | |
mask = (segs[..., 0, 0] > (w - 1)) & pt_xWs_valid | |
segs[mask, 0, :] = pt_xWs[mask] | |
# If the X coordinate of the second endpoint is out | |
mask = (segs[..., 1, 0] < 0) & pt_x0s_valid | |
segs[mask, 1, :] = pt_x0s[mask] | |
mask = (segs[:, 1, 0] > (w - 1)) & pt_xWs_valid | |
segs[mask, 1, :] = pt_xWs[mask] | |
# If the Y coordinate of the first endpoint is out | |
mask = (segs[..., 0, 1] < 0) & pt_y0s_valid | |
segs[mask, 0, :] = pt_y0s[mask] | |
mask = (segs[..., 0, 1] > (h - 1)) & pt_yHs_valid | |
segs[mask, 0, :] = pt_yHs[mask] | |
# If the Y coordinate of the second endpoint is out | |
mask = (segs[..., 1, 1] < 0) & pt_y0s_valid | |
segs[mask, 1, :] = pt_y0s[mask] | |
mask = (segs[..., 1, 1] > (h - 1)) & pt_yHs_valid | |
segs[mask, 1, :] = pt_yHs[mask] | |
assert ( | |
torch.all(segs >= 0) | |
and torch.all(segs[..., 0] < w) | |
and torch.all(segs[..., 1] < h) | |
) | |
return segs | |
def warp_lines_torch( | |
lines, H, inverse=True, dst_shape: Tuple[int, int] = None | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
:param lines: A tensor of shape (B, N, 2, 2) where B is the batch size, N the number of lines. | |
:param H: The homography used to convert the lines. batched or not (shapes (B, 8) and (8,) respectively). | |
:param inverse: Whether to apply H or the inverse of H | |
:param dst_shape:If provided, lines are trimmed to be inside the image | |
""" | |
device = lines.device | |
batch_size, n = lines.shape[:2] | |
lines = warp_points_torch(lines.reshape(batch_size, -1, 2), H, inverse).reshape( | |
lines.shape | |
) | |
if dst_shape is None: | |
return lines, torch.ones(lines.shape[:-2], dtype=torch.bool, device=device) | |
out_img = torch.any( | |
(lines < 0) | (lines >= torch.tensor(dst_shape[::-1], device=device)), -1 | |
) | |
valid = ~out_img.all(-1) | |
any_out_of_img = out_img.any(-1) | |
lines_to_trim = valid & any_out_of_img | |
for b in range(batch_size): | |
lines_to_trim_mask_b = lines_to_trim[b] | |
lines_to_trim_b = lines[b][lines_to_trim_mask_b] | |
corrected_lines = shrink_segs_to_img(lines_to_trim_b, dst_shape) | |
lines[b][lines_to_trim_mask_b] = corrected_lines | |
return lines, valid | |