Vincentqyw
fix: roma
c74a070
raw
history blame
No virus
6.17 kB
"""
Common photometric transforms for data augmentation.
"""
import numpy as np
from PIL import Image
from torchvision import transforms as transforms
import cv2
# List all the available augmentations
available_augmentations = [
"additive_gaussian_noise",
"additive_speckle_noise",
"random_brightness",
"random_contrast",
"additive_shade",
"motion_blur",
]
class additive_gaussian_noise(object):
"""Additive gaussian noise."""
def __init__(self, stddev_range=None):
# If std is not given, use the default setting
if stddev_range is None:
self.stddev_range = [5, 95]
else:
self.stddev_range = stddev_range
def __call__(self, input_image):
# Get the noise stddev
stddev = np.random.uniform(self.stddev_range[0], self.stddev_range[1])
noise = np.random.normal(0.0, stddev, size=input_image.shape)
noisy_image = (input_image + noise).clip(0.0, 255.0)
return noisy_image
class additive_speckle_noise(object):
"""Additive speckle noise."""
def __init__(self, prob_range=None):
# If prob range is not given, use the default setting
if prob_range is None:
self.prob_range = [0.0, 0.005]
else:
self.prob_range = prob_range
def __call__(self, input_image):
# Sample
prob = np.random.uniform(self.prob_range[0], self.prob_range[1])
sample = np.random.uniform(0.0, 1.0, size=input_image.shape)
# Get the mask
mask0 = sample <= prob
mask1 = sample >= (1 - prob)
# Mask the image (here we assume the image ranges from 0~255
noisy = input_image.copy()
noisy[mask0] = 0.0
noisy[mask1] = 255.0
return noisy
class random_brightness(object):
"""Brightness change."""
def __init__(self, brightness=None):
# If the brightness is not given, use the default setting
if brightness is None:
self.brightness = 0.5
else:
self.brightness = brightness
# Initialize the transformer
self.transform = transforms.ColorJitter(brightness=self.brightness)
def __call__(self, input_image):
# Convert to PIL image
if isinstance(input_image, np.ndarray):
input_image = Image.fromarray(input_image.astype(np.uint8))
return np.array(self.transform(input_image))
class random_contrast(object):
"""Additive contrast."""
def __init__(self, contrast=None):
# If the brightness is not given, use the default setting
if contrast is None:
self.contrast = 0.5
else:
self.contrast = contrast
# Initialize the transformer
self.transform = transforms.ColorJitter(contrast=self.contrast)
def __call__(self, input_image):
# Convert to PIL image
if isinstance(input_image, np.ndarray):
input_image = Image.fromarray(input_image.astype(np.uint8))
return np.array(self.transform(input_image))
class additive_shade(object):
"""Additive shade."""
def __init__(self, nb_ellipses=20, transparency_range=None, kernel_size_range=None):
self.nb_ellipses = nb_ellipses
if transparency_range is None:
self.transparency_range = [-0.5, 0.8]
else:
self.transparency_range = transparency_range
if kernel_size_range is None:
self.kernel_size_range = [250, 350]
else:
self.kernel_size_range = kernel_size_range
def __call__(self, input_image):
# ToDo: if we should convert to numpy array first.
min_dim = min(input_image.shape[:2]) / 4
mask = np.zeros(input_image.shape[:2], np.uint8)
for i in range(self.nb_ellipses):
ax = int(max(np.random.rand() * min_dim, min_dim / 5))
ay = int(max(np.random.rand() * min_dim, min_dim / 5))
max_rad = max(ax, ay)
x = np.random.randint(max_rad, input_image.shape[1] - max_rad)
y = np.random.randint(max_rad, input_image.shape[0] - max_rad)
angle = np.random.rand() * 90
cv2.ellipse(mask, (x, y), (ax, ay), angle, 0, 360, 255, -1)
transparency = np.random.uniform(*self.transparency_range)
kernel_size = np.random.randint(*self.kernel_size_range)
# kernel_size has to be odd
if (kernel_size % 2) == 0:
kernel_size += 1
mask = cv2.GaussianBlur(mask.astype(np.float32), (kernel_size, kernel_size), 0)
shaded = input_image[..., None] * (
1 - transparency * mask[..., np.newaxis] / 255.0
)
shaded = np.clip(shaded, 0, 255)
return np.reshape(shaded, input_image.shape)
class motion_blur(object):
"""Motion blur."""
def __init__(self, max_kernel_size=10):
self.max_kernel_size = max_kernel_size
def __call__(self, input_image):
# Either vertical, horizontal or diagonal blur
mode = np.random.choice(["h", "v", "diag_down", "diag_up"])
ksize = np.random.randint(0, int(round((self.max_kernel_size + 1) / 2))) * 2 + 1
center = int((ksize - 1) / 2)
kernel = np.zeros((ksize, ksize))
if mode == "h":
kernel[center, :] = 1.0
elif mode == "v":
kernel[:, center] = 1.0
elif mode == "diag_down":
kernel = np.eye(ksize)
elif mode == "diag_up":
kernel = np.flip(np.eye(ksize), 0)
var = ksize * ksize / 16.0
grid = np.repeat(np.arange(ksize)[:, np.newaxis], ksize, axis=-1)
gaussian = np.exp(
-(np.square(grid - center) + np.square(grid.T - center)) / (2.0 * var)
)
kernel *= gaussian
kernel /= np.sum(kernel)
blurred = cv2.filter2D(input_image, -1, kernel)
return np.reshape(blurred, input_image.shape)
class normalize_image(object):
"""Image normalization to the range [0, 1]."""
def __init__(self):
self.normalize_value = 255
def __call__(self, input_image):
return (input_image / self.normalize_value).astype(np.float32)