Spaces:
Running
Running
import numpy as np | |
import torch | |
from pytlsd import lsd | |
from sklearn.cluster import DBSCAN | |
from .base_model import BaseModel | |
from .superpoint import SuperPoint, sample_descriptors | |
from ..geometry import warp_lines_torch | |
def lines_to_wireframe(lines, line_scores, all_descs, conf): | |
"""Given a set of lines, their score and dense descriptors, | |
merge close-by endpoints and compute a wireframe defined by | |
its junctions and connectivity. | |
Returns: | |
junctions: list of [num_junc, 2] tensors listing all wireframe junctions | |
junc_scores: list of [num_junc] tensors with the junction score | |
junc_descs: list of [dim, num_junc] tensors with the junction descriptors | |
connectivity: list of [num_junc, num_junc] bool arrays with True when 2 junctions are connected | |
new_lines: the new set of [b_size, num_lines, 2, 2] lines | |
lines_junc_idx: a [b_size, num_lines, 2] tensor with the indices of the junctions of each endpoint | |
num_true_junctions: a list of the number of valid junctions for each image in the batch, | |
i.e. before filling with random ones | |
""" | |
b_size, _, _, _ = all_descs.shape | |
device = lines.device | |
endpoints = lines.reshape(b_size, -1, 2) | |
( | |
junctions, | |
junc_scores, | |
junc_descs, | |
connectivity, | |
new_lines, | |
lines_junc_idx, | |
num_true_junctions, | |
) = ([], [], [], [], [], [], []) | |
for bs in range(b_size): | |
# Cluster the junctions that are close-by | |
db = DBSCAN(eps=conf.nms_radius, min_samples=1).fit(endpoints[bs].cpu().numpy()) | |
clusters = db.labels_ | |
n_clusters = len(set(clusters)) | |
num_true_junctions.append(n_clusters) | |
# Compute the average junction and score for each cluster | |
clusters = torch.tensor(clusters, dtype=torch.long, device=device) | |
new_junc = torch.zeros(n_clusters, 2, dtype=torch.float, device=device) | |
new_junc.scatter_reduce_( | |
0, | |
clusters[:, None].repeat(1, 2), | |
endpoints[bs], | |
reduce="mean", | |
include_self=False, | |
) | |
junctions.append(new_junc) | |
new_scores = torch.zeros(n_clusters, dtype=torch.float, device=device) | |
new_scores.scatter_reduce_( | |
0, | |
clusters, | |
torch.repeat_interleave(line_scores[bs], 2), | |
reduce="mean", | |
include_self=False, | |
) | |
junc_scores.append(new_scores) | |
# Compute the new lines | |
new_lines.append(junctions[-1][clusters].reshape(-1, 2, 2)) | |
lines_junc_idx.append(clusters.reshape(-1, 2)) | |
# Compute the junction connectivity | |
junc_connect = torch.eye(n_clusters, dtype=torch.bool, device=device) | |
pairs = clusters.reshape(-1, 2) # these pairs are connected by a line | |
junc_connect[pairs[:, 0], pairs[:, 1]] = True | |
junc_connect[pairs[:, 1], pairs[:, 0]] = True | |
connectivity.append(junc_connect) | |
# Interpolate the new junction descriptors | |
junc_descs.append( | |
sample_descriptors(junctions[-1][None], all_descs[bs : (bs + 1)], 8)[0] | |
) | |
new_lines = torch.stack(new_lines, dim=0) | |
lines_junc_idx = torch.stack(lines_junc_idx, dim=0) | |
return ( | |
junctions, | |
junc_scores, | |
junc_descs, | |
connectivity, | |
new_lines, | |
lines_junc_idx, | |
num_true_junctions, | |
) | |
class SPWireframeDescriptor(BaseModel): | |
default_conf = { | |
"sp_params": { | |
"has_detector": True, | |
"has_descriptor": True, | |
"descriptor_dim": 256, | |
"trainable": False, | |
# Inference | |
"return_all": True, | |
"sparse_outputs": True, | |
"nms_radius": 4, | |
"detection_threshold": 0.005, | |
"max_num_keypoints": 1000, | |
"force_num_keypoints": True, | |
"remove_borders": 4, | |
}, | |
"wireframe_params": { | |
"merge_points": True, | |
"merge_line_endpoints": True, | |
"nms_radius": 3, | |
"max_n_junctions": 500, | |
}, | |
"max_n_lines": 250, | |
"min_length": 15, | |
} | |
required_data_keys = ["image"] | |
def _init(self, conf): | |
self.conf = conf | |
self.sp = SuperPoint(conf.sp_params) | |
def detect_lsd_lines(self, x, max_n_lines=None): | |
if max_n_lines is None: | |
max_n_lines = self.conf.max_n_lines | |
lines, scores, valid_lines = [], [], [] | |
for b in range(len(x)): | |
# For each image on batch | |
img = (x[b].squeeze().cpu().numpy() * 255).astype(np.uint8) | |
if max_n_lines is None: | |
b_segs = lsd(img) | |
else: | |
for s in [0.3, 0.4, 0.5, 0.7, 0.8, 1.0]: | |
b_segs = lsd(img, scale=s) | |
if len(b_segs) >= max_n_lines: | |
break | |
segs_length = np.linalg.norm(b_segs[:, 2:4] - b_segs[:, 0:2], axis=1) | |
# Remove short lines | |
b_segs = b_segs[segs_length >= self.conf.min_length] | |
segs_length = segs_length[segs_length >= self.conf.min_length] | |
b_scores = b_segs[:, -1] * np.sqrt(segs_length) | |
# Take the most relevant segments with | |
indices = np.argsort(-b_scores) | |
if max_n_lines is not None: | |
indices = indices[:max_n_lines] | |
lines.append(torch.from_numpy(b_segs[indices, :4].reshape(-1, 2, 2))) | |
scores.append(torch.from_numpy(b_scores[indices])) | |
valid_lines.append(torch.ones_like(scores[-1], dtype=torch.bool)) | |
lines = torch.stack(lines).to(x) | |
scores = torch.stack(scores).to(x) | |
valid_lines = torch.stack(valid_lines).to(x.device) | |
return lines, scores, valid_lines | |
def _forward(self, data): | |
b_size, _, h, w = data["image"].shape | |
device = data["image"].device | |
if not self.conf.sp_params.force_num_keypoints: | |
assert b_size == 1, "Only batch size of 1 accepted for non padded inputs" | |
# Line detection | |
if "lines" not in data or "line_scores" not in data: | |
if "original_img" in data: | |
# Detect more lines, because when projecting them to the image most of them will be discarded | |
lines, line_scores, valid_lines = self.detect_lsd_lines( | |
data["original_img"], self.conf.max_n_lines * 3 | |
) | |
# Apply the same transformation that is applied in homography_adaptation | |
lines, valid_lines2 = warp_lines_torch( | |
lines, data["H"], False, data["image"].shape[-2:] | |
) | |
valid_lines = valid_lines & valid_lines2 | |
lines[~valid_lines] = -1 | |
line_scores[~valid_lines] = 0 | |
# Re-sort the line segments to pick the ones that are inside the image and have bigger score | |
sorted_scores, sorting_indices = torch.sort( | |
line_scores, dim=-1, descending=True | |
) | |
line_scores = sorted_scores[:, : self.conf.max_n_lines] | |
sorting_indices = sorting_indices[:, : self.conf.max_n_lines] | |
lines = torch.take_along_dim(lines, sorting_indices[..., None, None], 1) | |
valid_lines = torch.take_along_dim(valid_lines, sorting_indices, 1) | |
else: | |
lines, line_scores, valid_lines = self.detect_lsd_lines(data["image"]) | |
else: | |
lines, line_scores, valid_lines = ( | |
data["lines"], | |
data["line_scores"], | |
data["valid_lines"], | |
) | |
if line_scores.shape[-1] != 0: | |
line_scores /= ( | |
line_scores.new_tensor(1e-8) + line_scores.max(dim=1).values[:, None] | |
) | |
# SuperPoint prediction | |
pred = self.sp(data) | |
# Remove keypoints that are too close to line endpoints | |
if self.conf.wireframe_params.merge_points: | |
kp = pred["keypoints"] | |
line_endpts = lines.reshape(b_size, -1, 2) | |
dist_pt_lines = torch.norm(kp[:, :, None] - line_endpts[:, None], dim=-1) | |
# For each keypoint, mark it as valid or to remove | |
pts_to_remove = torch.any( | |
dist_pt_lines < self.conf.sp_params.nms_radius, dim=2 | |
) | |
# Simply remove them (we assume batch_size = 1 here) | |
assert len(kp) == 1 | |
pred["keypoints"] = pred["keypoints"][0][~pts_to_remove[0]][None] | |
pred["keypoint_scores"] = pred["keypoint_scores"][0][~pts_to_remove[0]][ | |
None | |
] | |
pred["descriptors"] = pred["descriptors"][0].T[~pts_to_remove[0]].T[None] | |
# Connect the lines together to form a wireframe | |
orig_lines = lines.clone() | |
if self.conf.wireframe_params.merge_line_endpoints and len(lines[0]) > 0: | |
# Merge first close-by endpoints to connect lines | |
( | |
line_points, | |
line_pts_scores, | |
line_descs, | |
line_association, | |
lines, | |
lines_junc_idx, | |
num_true_junctions, | |
) = lines_to_wireframe( | |
lines, | |
line_scores, | |
pred["all_descriptors"], | |
conf=self.conf.wireframe_params, | |
) | |
# Add the keypoints to the junctions and fill the rest with random keypoints | |
(all_points, all_scores, all_descs, pl_associativity) = [], [], [], [] | |
for bs in range(b_size): | |
all_points.append( | |
torch.cat([line_points[bs], pred["keypoints"][bs]], dim=0) | |
) | |
all_scores.append( | |
torch.cat([line_pts_scores[bs], pred["keypoint_scores"][bs]], dim=0) | |
) | |
all_descs.append( | |
torch.cat([line_descs[bs], pred["descriptors"][bs]], dim=1) | |
) | |
associativity = torch.eye( | |
len(all_points[-1]), dtype=torch.bool, device=device | |
) | |
associativity[ | |
: num_true_junctions[bs], : num_true_junctions[bs] | |
] = line_association[bs][ | |
: num_true_junctions[bs], : num_true_junctions[bs] | |
] | |
pl_associativity.append(associativity) | |
all_points = torch.stack(all_points, dim=0) | |
all_scores = torch.stack(all_scores, dim=0) | |
all_descs = torch.stack(all_descs, dim=0) | |
pl_associativity = torch.stack(pl_associativity, dim=0) | |
else: | |
# Lines are independent | |
all_points = torch.cat( | |
[lines.reshape(b_size, -1, 2), pred["keypoints"]], dim=1 | |
) | |
n_pts = all_points.shape[1] | |
num_lines = lines.shape[1] | |
num_true_junctions = [num_lines * 2] * b_size | |
all_scores = torch.cat( | |
[ | |
torch.repeat_interleave(line_scores, 2, dim=1), | |
pred["keypoint_scores"], | |
], | |
dim=1, | |
) | |
pred["line_descriptors"] = self.endpoints_pooling( | |
lines, pred["all_descriptors"], (h, w) | |
) | |
all_descs = torch.cat( | |
[ | |
pred["line_descriptors"].reshape( | |
b_size, self.conf.sp_params.descriptor_dim, -1 | |
), | |
pred["descriptors"], | |
], | |
dim=2, | |
) | |
pl_associativity = torch.eye(n_pts, dtype=torch.bool, device=device)[ | |
None | |
].repeat(b_size, 1, 1) | |
lines_junc_idx = ( | |
torch.arange(num_lines * 2, device=device) | |
.reshape(1, -1, 2) | |
.repeat(b_size, 1, 1) | |
) | |
del pred["all_descriptors"] # Remove dense descriptors to save memory | |
torch.cuda.empty_cache() | |
return { | |
"keypoints": all_points, | |
"keypoint_scores": all_scores, | |
"descriptors": all_descs, | |
"pl_associativity": pl_associativity, | |
"num_junctions": torch.tensor(num_true_junctions), | |
"lines": lines, | |
"orig_lines": orig_lines, | |
"lines_junc_idx": lines_junc_idx, | |
"line_scores": line_scores, | |
"valid_lines": valid_lines, | |
} | |
def endpoints_pooling(segs, all_descriptors, img_shape): | |
assert segs.ndim == 4 and segs.shape[-2:] == (2, 2) | |
filter_shape = all_descriptors.shape[-2:] | |
scale_x = filter_shape[1] / img_shape[1] | |
scale_y = filter_shape[0] / img_shape[0] | |
scaled_segs = torch.round( | |
segs * torch.tensor([scale_x, scale_y]).to(segs) | |
).long() | |
scaled_segs[..., 0] = torch.clip(scaled_segs[..., 0], 0, filter_shape[1] - 1) | |
scaled_segs[..., 1] = torch.clip(scaled_segs[..., 1], 0, filter_shape[0] - 1) | |
line_descriptors = [ | |
all_descriptors[ | |
None, | |
b, | |
..., | |
torch.squeeze(b_segs[..., 1]), | |
torch.squeeze(b_segs[..., 0]), | |
] | |
for b, b_segs in enumerate(scaled_segs) | |
] | |
line_descriptors = torch.cat(line_descriptors) | |
return line_descriptors # Shape (1, 256, 308, 2) | |
def loss(self, pred, data): | |
raise NotImplementedError | |
def metrics(self, pred, data): | |
return {} | |