Spaces:
Running
Running
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .utils import split_feature, compute_same_pad | |
def gaussian_p(mean, logs, x): | |
""" | |
lnL = -1/2 * { ln|Var| + ((X - Mu)^T)(Var^-1)(X - Mu) + kln(2*PI) } | |
k = 1 (Independent) | |
Var = logs ** 2 | |
""" | |
c = math.log(2 * math.pi) | |
return -0.5 * (logs * 2.0 + ((x - mean) ** 2) / torch.exp(logs * 2.0) + c) | |
def gaussian_likelihood(mean, logs, x): | |
p = gaussian_p(mean, logs, x) | |
return torch.sum(p, dim=[1, 2, 3]) | |
def gaussian_sample(mean, logs, temperature=1): | |
# Sample from Gaussian with temperature | |
z = torch.normal(mean, torch.exp(logs) * temperature) | |
return z | |
def squeeze2d(input, factor): | |
if factor == 1: | |
return input | |
B, C, H, W = input.size() | |
assert H % factor == 0 and W % factor == 0, "H or W modulo factor is not 0" | |
x = input.view(B, C, H // factor, factor, W // factor, factor) | |
x = x.permute(0, 1, 3, 5, 2, 4).contiguous() | |
x = x.view(B, C * factor * factor, H // factor, W // factor) | |
return x | |
def unsqueeze2d(input, factor): | |
if factor == 1: | |
return input | |
factor2 = factor**2 | |
B, C, H, W = input.size() | |
assert C % (factor2) == 0, "C module factor squared is not 0" | |
x = input.view(B, C // factor2, factor, factor, H, W) | |
x = x.permute(0, 1, 4, 2, 5, 3).contiguous() | |
x = x.view(B, C // (factor2), H * factor, W * factor) | |
return x | |
class _ActNorm(nn.Module): | |
""" | |
Activation Normalization | |
Initialize the bias and scale with a given minibatch, | |
so that the output per-channel have zero mean and unit variance for that. | |
After initialization, `bias` and `logs` will be trained as parameters. | |
""" | |
def __init__(self, num_features, scale=1.0): | |
super().__init__() | |
# register mean and scale | |
size = [1, num_features, 1, 1] | |
self.bias = nn.Parameter(torch.zeros(*size)) | |
self.logs = nn.Parameter(torch.zeros(*size)) | |
self.num_features = num_features | |
self.scale = scale | |
self.inited = False | |
def initialize_parameters(self, input): | |
if not self.training: | |
raise ValueError("In Eval mode, but ActNorm not inited") | |
with torch.no_grad(): | |
bias = -torch.mean(input.clone(), dim=[0, 2, 3], keepdim=True) | |
vars = torch.mean((input.clone() + bias) ** 2, dim=[0, 2, 3], keepdim=True) | |
logs = torch.log(self.scale / (torch.sqrt(vars) + 1e-6)) | |
self.bias.data.copy_(bias.data) | |
self.logs.data.copy_(logs.data) | |
self.inited = True | |
def _center(self, input, reverse=False): | |
if reverse: | |
return input - self.bias | |
else: | |
return input + self.bias | |
def _scale(self, input, logdet=None, reverse=False): | |
if reverse: | |
input = input * torch.exp(-self.logs) | |
else: | |
input = input * torch.exp(self.logs) | |
if logdet is not None: | |
""" | |
logs is log_std of `mean of channels` | |
so we need to multiply by number of pixels | |
""" | |
b, c, h, w = input.shape | |
dlogdet = torch.sum(self.logs) * h * w | |
if reverse: | |
dlogdet *= -1 | |
logdet = logdet + dlogdet | |
return input, logdet | |
def forward(self, input, logdet=None, reverse=False): | |
self._check_input_dim(input) | |
if not self.inited: | |
self.initialize_parameters(input) | |
if reverse: | |
input, logdet = self._scale(input, logdet, reverse) | |
input = self._center(input, reverse) | |
else: | |
input = self._center(input, reverse) | |
input, logdet = self._scale(input, logdet, reverse) | |
return input, logdet | |
class ActNorm2d(_ActNorm): | |
def __init__(self, num_features, scale=1.0): | |
super().__init__(num_features, scale) | |
def _check_input_dim(self, input): | |
assert len(input.size()) == 4 | |
assert input.size(1) == self.num_features, ( | |
"[ActNorm]: input should be in shape as `BCHW`," | |
" channels should be {} rather than {}".format( | |
self.num_features, input.size() | |
) | |
) | |
class LinearZeros(nn.Module): | |
def __init__(self, in_channels, out_channels, logscale_factor=3): | |
super().__init__() | |
self.linear = nn.Linear(in_channels, out_channels) | |
self.linear.weight.data.zero_() | |
self.linear.bias.data.zero_() | |
self.logscale_factor = logscale_factor | |
self.logs = nn.Parameter(torch.zeros(out_channels)) | |
def forward(self, input): | |
output = self.linear(input) | |
return output * torch.exp(self.logs * self.logscale_factor) | |
class Conv2d(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding="same", | |
do_actnorm=True, | |
weight_std=0.05, | |
): | |
super().__init__() | |
if padding == "same": | |
padding = compute_same_pad(kernel_size, stride) | |
elif padding == "valid": | |
padding = 0 | |
self.conv = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
bias=(not do_actnorm), | |
) | |
# init weight with std | |
self.conv.weight.data.normal_(mean=0.0, std=weight_std) | |
if not do_actnorm: | |
self.conv.bias.data.zero_() | |
else: | |
self.actnorm = ActNorm2d(out_channels) | |
self.do_actnorm = do_actnorm | |
def forward(self, input): | |
x = self.conv(input) | |
if self.do_actnorm: | |
x, _ = self.actnorm(x) | |
return x | |
class Conv2dZeros(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding="same", | |
logscale_factor=3, | |
): | |
super().__init__() | |
if padding == "same": | |
padding = compute_same_pad(kernel_size, stride) | |
elif padding == "valid": | |
padding = 0 | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) | |
self.conv.weight.data.zero_() | |
self.conv.bias.data.zero_() | |
self.logscale_factor = logscale_factor | |
self.logs = nn.Parameter(torch.zeros(out_channels, 1, 1)) | |
def forward(self, input): | |
output = self.conv(input) | |
return output * torch.exp(self.logs * self.logscale_factor) | |
class Permute2d(nn.Module): | |
def __init__(self, num_channels, shuffle): | |
super().__init__() | |
self.num_channels = num_channels | |
self.indices = torch.arange(self.num_channels - 1, -1, -1, dtype=torch.long) | |
self.indices_inverse = torch.zeros((self.num_channels), dtype=torch.long) | |
for i in range(self.num_channels): | |
self.indices_inverse[self.indices[i]] = i | |
if shuffle: | |
self.reset_indices() | |
def reset_indices(self): | |
shuffle_idx = torch.randperm(self.indices.shape[0]) | |
self.indices = self.indices[shuffle_idx] | |
for i in range(self.num_channels): | |
self.indices_inverse[self.indices[i]] = i | |
def forward(self, input, reverse=False): | |
assert len(input.size()) == 4 | |
if not reverse: | |
input = input[:, self.indices, :, :] | |
return input | |
else: | |
return input[:, self.indices_inverse, :, :] | |
class Split2d(nn.Module): | |
def __init__(self, num_channels): | |
super().__init__() | |
self.conv = Conv2dZeros(num_channels // 2, num_channels) | |
def split2d_prior(self, z): | |
h = self.conv(z) | |
return split_feature(h, "cross") | |
def forward(self, input, logdet=0.0, reverse=False, temperature=None): | |
if reverse: | |
z1 = input | |
mean, logs = self.split2d_prior(z1) | |
z2 = gaussian_sample(mean, logs, temperature) | |
z = torch.cat((z1, z2), dim=1) | |
return z, logdet | |
else: | |
z1, z2 = split_feature(input, "split") | |
mean, logs = self.split2d_prior(z1) | |
logdet = gaussian_likelihood(mean, logs, z2) + logdet | |
return z1, logdet | |
class SqueezeLayer(nn.Module): | |
def __init__(self, factor): | |
super().__init__() | |
self.factor = factor | |
def forward(self, input, logdet=None, reverse=False): | |
if reverse: | |
output = unsqueeze2d(input, self.factor) | |
else: | |
output = squeeze2d(input, self.factor) | |
return output, logdet | |
class InvertibleConv1x1(nn.Module): | |
def __init__(self, num_channels, LU_decomposed): | |
super().__init__() | |
w_shape = [num_channels, num_channels] | |
w_init = torch.linalg.qr(torch.randn(*w_shape))[0] | |
if not LU_decomposed: | |
self.weight = nn.Parameter(torch.Tensor(w_init)) | |
else: | |
p, lower, upper = torch.lu_unpack(*torch.lu(w_init)) | |
s = torch.diag(upper) | |
sign_s = torch.sign(s) | |
log_s = torch.log(torch.abs(s)) | |
upper = torch.triu(upper, 1) | |
l_mask = torch.tril(torch.ones(w_shape), -1) | |
eye = torch.eye(*w_shape) | |
self.register_buffer("p", p) | |
self.register_buffer("sign_s", sign_s) | |
self.lower = nn.Parameter(lower) | |
self.log_s = nn.Parameter(log_s) | |
self.upper = nn.Parameter(upper) | |
self.l_mask = l_mask | |
self.eye = eye | |
self.w_shape = w_shape | |
self.LU_decomposed = LU_decomposed | |
def get_weight(self, input, reverse): | |
b, c, h, w = input.shape | |
if not self.LU_decomposed: | |
dlogdet = torch.slogdet(self.weight)[1] * h * w | |
if reverse: | |
weight = torch.inverse(self.weight) | |
else: | |
weight = self.weight | |
else: | |
self.l_mask = self.l_mask.to(input.device) | |
self.eye = self.eye.to(input.device) | |
lower = self.lower * self.l_mask + self.eye | |
u = self.upper * self.l_mask.transpose(0, 1).contiguous() | |
u += torch.diag(self.sign_s * torch.exp(self.log_s)) | |
dlogdet = torch.sum(self.log_s) * h * w | |
if reverse: | |
u_inv = torch.inverse(u) | |
l_inv = torch.inverse(lower) | |
p_inv = torch.inverse(self.p) | |
weight = torch.matmul(u_inv, torch.matmul(l_inv, p_inv)) | |
else: | |
weight = torch.matmul(self.p, torch.matmul(lower, u)) | |
return weight.view(self.w_shape[0], self.w_shape[1], 1, 1), dlogdet | |
def forward(self, input, logdet=None, reverse=False): | |
""" | |
log-det = log|abs(|W|)| * pixels | |
""" | |
weight, dlogdet = self.get_weight(input, reverse) | |
if not reverse: | |
z = F.conv2d(input, weight) | |
if logdet is not None: | |
logdet = logdet + dlogdet | |
return z, logdet | |
else: | |
z = F.conv2d(input, weight) | |
if logdet is not None: | |
logdet = logdet - dlogdet | |
return z, logdet | |