Spaces:
Running
Running
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from dkm.utils.utils import tensor_to_pil | |
import cv2 | |
from dkm import DKMv3_outdoor | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if __name__ == "__main__": | |
from argparse import ArgumentParser | |
parser = ArgumentParser() | |
parser.add_argument("--im_A_path", default="assets/sacre_coeur_A.jpg", type=str) | |
parser.add_argument("--im_B_path", default="assets/sacre_coeur_B.jpg", type=str) | |
args, _ = parser.parse_known_args() | |
im1_path = args.im_A_path | |
im2_path = args.im_B_path | |
# Create model | |
dkm_model = DKMv3_outdoor(device=device) | |
W_A, H_A = Image.open(im1_path).size | |
W_B, H_B = Image.open(im2_path).size | |
# Match | |
warp, certainty = dkm_model.match(im1_path, im2_path, device=device) | |
# Sample matches for estimation | |
matches, certainty = dkm_model.sample(warp, certainty) | |
kpts1, kpts2 = dkm_model.to_pixel_coordinates(matches, H_A, W_A, H_B, W_B) | |
F, mask = cv2.findFundamentalMat( | |
kpts1.cpu().numpy(), | |
kpts2.cpu().numpy(), | |
ransacReprojThreshold=0.2, | |
method=cv2.USAC_MAGSAC, | |
confidence=0.999999, | |
maxIters=10000, | |
) | |
# TODO: some better visualization | |