Spaces:
Running
Running
import torch | |
import cv2 | |
import numpy as np | |
from collections import OrderedDict | |
from loguru import logger | |
from kornia.geometry.epipolar import numeric | |
from kornia.geometry.conversions import convert_points_to_homogeneous | |
# --- METRICS --- | |
def relative_pose_error(T_0to1, R, t, ignore_gt_t_thr=0.0): | |
# angle error between 2 vectors | |
t_gt = T_0to1[:3, 3] | |
n = np.linalg.norm(t) * np.linalg.norm(t_gt) | |
t_err = np.rad2deg(np.arccos(np.clip(np.dot(t, t_gt) / n, -1.0, 1.0))) | |
t_err = np.minimum(t_err, 180 - t_err) # handle E ambiguity | |
if np.linalg.norm(t_gt) < ignore_gt_t_thr: # pure rotation is challenging | |
t_err = 0 | |
# angle error between 2 rotation matrices | |
R_gt = T_0to1[:3, :3] | |
cos = (np.trace(np.dot(R.T, R_gt)) - 1) / 2 | |
cos = np.clip(cos, -1.0, 1.0) # handle numercial errors | |
R_err = np.rad2deg(np.abs(np.arccos(cos))) | |
return t_err, R_err | |
def symmetric_epipolar_distance(pts0, pts1, E, K0, K1): | |
"""Squared symmetric epipolar distance. | |
This can be seen as a biased estimation of the reprojection error. | |
Args: | |
pts0 (torch.Tensor): [N, 2] | |
E (torch.Tensor): [3, 3] | |
""" | |
pts0 = (pts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None] | |
pts1 = (pts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None] | |
pts0 = convert_points_to_homogeneous(pts0) | |
pts1 = convert_points_to_homogeneous(pts1) | |
Ep0 = pts0 @ E.T # [N, 3] | |
p1Ep0 = torch.sum(pts1 * Ep0, -1) # [N,] | |
Etp1 = pts1 @ E # [N, 3] | |
d = p1Ep0**2 * ( | |
1.0 / (Ep0[:, 0] ** 2 + Ep0[:, 1] ** 2) | |
+ 1.0 / (Etp1[:, 0] ** 2 + Etp1[:, 1] ** 2) | |
) # N | |
return d | |
def compute_symmetrical_epipolar_errors(data): | |
""" | |
Update: | |
data (dict):{"epi_errs": [M]} | |
""" | |
Tx = numeric.cross_product_matrix(data["T_0to1"][:, :3, 3]) | |
E_mat = Tx @ data["T_0to1"][:, :3, :3] | |
m_bids = data["m_bids"] | |
pts0 = data["mkpts0_f"] | |
pts1 = data["mkpts1_f"] | |
epi_errs = [] | |
for bs in range(Tx.size(0)): | |
mask = m_bids == bs | |
epi_errs.append( | |
symmetric_epipolar_distance( | |
pts0[mask], pts1[mask], E_mat[bs], data["K0"][bs], data["K1"][bs] | |
) | |
) | |
epi_errs = torch.cat(epi_errs, dim=0) | |
data.update({"epi_errs": epi_errs}) | |
def compute_symmetrical_epipolar_errors_offset(data): | |
""" | |
Update: | |
data (dict):{"epi_errs": [M]} | |
""" | |
Tx = numeric.cross_product_matrix(data["T_0to1"][:, :3, 3]) | |
E_mat = Tx @ data["T_0to1"][:, :3, :3] | |
m_bids = data["offset_bids"] | |
l_ids = data["offset_lids"] | |
pts0 = data["offset_kpts0_f"] | |
pts1 = data["offset_kpts1_f"] | |
epi_errs = [] | |
layer_num = data["predict_flow"][0].shape[0] | |
for bs in range(Tx.size(0)): | |
for ls in range(layer_num): | |
mask_b = m_bids == bs | |
mask_l = l_ids == ls | |
mask = mask_b & mask_l | |
epi_errs.append( | |
symmetric_epipolar_distance( | |
pts0[mask], pts1[mask], E_mat[bs], data["K0"][bs], data["K1"][bs] | |
) | |
) | |
epi_errs = torch.cat(epi_errs, dim=0) | |
data.update({"epi_errs_offset": epi_errs}) # [b*l*n] | |
def compute_symmetrical_epipolar_errors_offset_bidirectional(data): | |
""" | |
Update | |
data (dict):{"epi_errs": [M]} | |
""" | |
_compute_symmetrical_epipolar_errors_offset(data, "left") | |
_compute_symmetrical_epipolar_errors_offset(data, "right") | |
def _compute_symmetrical_epipolar_errors_offset(data, side): | |
""" | |
Update | |
data (dict):{"epi_errs": [M]} | |
""" | |
assert side == "left" or side == "right", "invalid side" | |
Tx = numeric.cross_product_matrix(data["T_0to1"][:, :3, 3]) | |
E_mat = Tx @ data["T_0to1"][:, :3, :3] | |
m_bids = data["offset_bids_" + side] | |
l_ids = data["offset_lids_" + side] | |
pts0 = data["offset_kpts0_f_" + side] | |
pts1 = data["offset_kpts1_f_" + side] | |
epi_errs = [] | |
layer_num = data["predict_flow"][0].shape[0] | |
for bs in range(Tx.size(0)): | |
for ls in range(layer_num): | |
mask_b = m_bids == bs | |
mask_l = l_ids == ls | |
mask = mask_b & mask_l | |
epi_errs.append( | |
symmetric_epipolar_distance( | |
pts0[mask], pts1[mask], E_mat[bs], data["K0"][bs], data["K1"][bs] | |
) | |
) | |
epi_errs = torch.cat(epi_errs, dim=0) | |
data.update({"epi_errs_offset_" + side: epi_errs}) # [b*l*n] | |
def estimate_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999): | |
if len(kpts0) < 5: | |
return None | |
# normalize keypoints | |
kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None] | |
kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None] | |
# normalize ransac threshold | |
ransac_thr = thresh / np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]]) | |
# compute pose with cv2 | |
E, mask = cv2.findEssentialMat( | |
kpts0, kpts1, np.eye(3), threshold=ransac_thr, prob=conf, method=cv2.RANSAC | |
) | |
if E is None: | |
print("\nE is None while trying to recover pose.\n") | |
return None | |
# recover pose from E | |
best_num_inliers = 0 | |
ret = None | |
for _E in np.split(E, len(E) / 3): | |
n, R, t, _ = cv2.recoverPose(_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask) | |
if n > best_num_inliers: | |
ret = (R, t[:, 0], mask.ravel() > 0) | |
best_num_inliers = n | |
return ret | |
def compute_pose_errors(data, config): | |
""" | |
Update: | |
data (dict):{ | |
"R_errs" List[float]: [N] | |
"t_errs" List[float]: [N] | |
"inliers" List[np.ndarray]: [N] | |
} | |
""" | |
pixel_thr = config.TRAINER.RANSAC_PIXEL_THR # 0.5 | |
conf = config.TRAINER.RANSAC_CONF # 0.99999 | |
data.update({"R_errs": [], "t_errs": [], "inliers": []}) | |
m_bids = data["m_bids"].cpu().numpy() | |
pts0 = data["mkpts0_f"].cpu().numpy() | |
pts1 = data["mkpts1_f"].cpu().numpy() | |
K0 = data["K0"].cpu().numpy() | |
K1 = data["K1"].cpu().numpy() | |
T_0to1 = data["T_0to1"].cpu().numpy() | |
for bs in range(K0.shape[0]): | |
mask = m_bids == bs | |
ret = estimate_pose( | |
pts0[mask], pts1[mask], K0[bs], K1[bs], pixel_thr, conf=conf | |
) | |
if ret is None: | |
data["R_errs"].append(np.inf) | |
data["t_errs"].append(np.inf) | |
data["inliers"].append(np.array([]).astype(np.bool)) | |
else: | |
R, t, inliers = ret | |
t_err, R_err = relative_pose_error(T_0to1[bs], R, t, ignore_gt_t_thr=0.0) | |
data["R_errs"].append(R_err) | |
data["t_errs"].append(t_err) | |
data["inliers"].append(inliers) | |
# --- METRIC AGGREGATION --- | |
def error_auc(errors, thresholds): | |
""" | |
Args: | |
errors (list): [N,] | |
thresholds (list) | |
""" | |
errors = [0] + sorted(list(errors)) | |
recall = list(np.linspace(0, 1, len(errors))) | |
aucs = [] | |
thresholds = [5, 10, 20] | |
for thr in thresholds: | |
last_index = np.searchsorted(errors, thr) | |
y = recall[:last_index] + [recall[last_index - 1]] | |
x = errors[:last_index] + [thr] | |
aucs.append(np.trapz(y, x) / thr) | |
return {f"auc@{t}": auc for t, auc in zip(thresholds, aucs)} | |
def epidist_prec(errors, thresholds, ret_dict=False, offset=False): | |
precs = [] | |
for thr in thresholds: | |
prec_ = [] | |
for errs in errors: | |
correct_mask = errs < thr | |
prec_.append(np.mean(correct_mask) if len(correct_mask) > 0 else 0) | |
precs.append(np.mean(prec_) if len(prec_) > 0 else 0) | |
if ret_dict: | |
return ( | |
{f"prec@{t:.0e}": prec for t, prec in zip(thresholds, precs)} | |
if not offset | |
else {f"prec_flow@{t:.0e}": prec for t, prec in zip(thresholds, precs)} | |
) | |
else: | |
return precs | |
def aggregate_metrics(metrics, epi_err_thr=5e-4): | |
"""Aggregate metrics for the whole dataset: | |
(This method should be called once per dataset) | |
1. AUC of the pose error (angular) at the threshold [5, 10, 20] | |
2. Mean matching precision at the threshold 5e-4(ScanNet), 1e-4(MegaDepth) | |
""" | |
# filter duplicates | |
unq_ids = OrderedDict((iden, id) for id, iden in enumerate(metrics["identifiers"])) | |
unq_ids = list(unq_ids.values()) | |
logger.info(f"Aggregating metrics over {len(unq_ids)} unique items...") | |
# pose auc | |
angular_thresholds = [5, 10, 20] | |
pose_errors = np.max(np.stack([metrics["R_errs"], metrics["t_errs"]]), axis=0)[ | |
unq_ids | |
] | |
aucs = error_auc(pose_errors, angular_thresholds) # (auc@5, auc@10, auc@20) | |
# matching precision | |
dist_thresholds = [epi_err_thr] | |
precs = epidist_prec( | |
np.array(metrics["epi_errs"], dtype=object)[unq_ids], dist_thresholds, True | |
) # (prec@err_thr) | |
# offset precision | |
try: | |
precs_offset = epidist_prec( | |
np.array(metrics["epi_errs_offset"], dtype=object)[unq_ids], | |
[2e-3], | |
True, | |
offset=True, | |
) | |
return {**aucs, **precs, **precs_offset} | |
except: | |
return {**aucs, **precs} | |