Spaces:
Running
Running
import argparse | |
import numpy as np | |
import gradio as gr | |
from pathlib import Path | |
from typing import Dict, Any, Optional, Tuple, List, Union | |
from common.utils import ( | |
ransac_zoo, | |
generate_warp_images, | |
load_config, | |
get_matcher_zoo, | |
run_matching, | |
run_ransac, | |
gen_examples, | |
GRADIO_VERSION, | |
) | |
DESCRIPTION = """ | |
# Image Matching WebUI | |
This Space demonstrates [Image Matching WebUI](https://github.com/Vincentqyw/image-matching-webui) by vincent qin. Feel free to play with it, or duplicate to run image matching without a queue! | |
<br/> | |
π For more details about supported local features and matchers, please refer to https://github.com/Vincentqyw/image-matching-webui | |
π All algorithms run on CPU for inference, causing slow speeds and high latency. For faster inference, please download the [source code](https://github.com/Vincentqyw/image-matching-webui) for local deployment. | |
π Your feedback is valuable to me. Please do not hesitate to report any bugs [here](https://github.com/Vincentqyw/image-matching-webui/issues). | |
""" | |
class ImageMatchingApp: | |
def __init__(self, server_name="0.0.0.0", server_port=7860, **kwargs): | |
self.server_name = server_name | |
self.server_port = server_port | |
self.config_path = kwargs.get( | |
"config", Path(__file__).parent / "config.yaml" | |
) | |
self.cfg = load_config(self.config_path) | |
self.matcher_zoo = get_matcher_zoo(self.cfg["matcher_zoo"]) | |
self.app = None | |
self.init_interface() | |
# print all the keys | |
def init_matcher_dropdown(self): | |
algos = [] | |
for k, v in self.cfg["matcher_zoo"].items(): | |
if v.get("enable", True): | |
algos.append(k) | |
return algos | |
def init_interface(self): | |
with gr.Blocks() as self.app: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Image( | |
str(Path(__file__).parent.parent / "assets/logo.webp"), | |
elem_id="logo-img", | |
show_label=False, | |
show_share_button=False, | |
show_download_button=False, | |
) | |
with gr.Column(scale=3): | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(equal_height=False): | |
with gr.Column(): | |
with gr.Row(): | |
matcher_list = gr.Dropdown( | |
choices=self.init_matcher_dropdown(), | |
value="disk+lightglue", | |
label="Matching Model", | |
interactive=True, | |
) | |
match_image_src = gr.Radio( | |
( | |
["upload", "webcam", "clipboard"] | |
if GRADIO_VERSION > "3" | |
else ["upload", "webcam", "canvas"] | |
), | |
label="Image Source", | |
value="upload", | |
) | |
with gr.Row(): | |
input_image0 = gr.Image( | |
label="Image 0", | |
type="numpy", | |
image_mode="RGB", | |
height=300 if GRADIO_VERSION > "3" else None, | |
interactive=True, | |
) | |
input_image1 = gr.Image( | |
label="Image 1", | |
type="numpy", | |
image_mode="RGB", | |
height=300 if GRADIO_VERSION > "3" else None, | |
interactive=True, | |
) | |
with gr.Row(): | |
button_reset = gr.Button(value="Reset") | |
button_run = gr.Button( | |
value="Run Match", variant="primary" | |
) | |
with gr.Accordion("Advanced Setting", open=False): | |
with gr.Accordion("Matching Setting", open=True): | |
with gr.Row(): | |
match_setting_threshold = gr.Slider( | |
minimum=0.0, | |
maximum=1, | |
step=0.001, | |
label="Match thres.", | |
value=0.1, | |
) | |
match_setting_max_features = gr.Slider( | |
minimum=10, | |
maximum=10000, | |
step=10, | |
label="Max features", | |
value=1000, | |
) | |
# TODO: add line settings | |
with gr.Row(): | |
detect_keypoints_threshold = gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.001, | |
label="Keypoint thres.", | |
value=0.015, | |
) | |
detect_line_threshold = gr.Slider( | |
minimum=0.1, | |
maximum=1, | |
step=0.01, | |
label="Line thres.", | |
value=0.2, | |
) | |
# matcher_lists = gr.Radio( | |
# ["NN-mutual", "Dual-Softmax"], | |
# label="Matcher mode", | |
# value="NN-mutual", | |
# ) | |
with gr.Accordion("RANSAC Setting", open=True): | |
with gr.Row(equal_height=False): | |
ransac_method = gr.Dropdown( | |
choices=ransac_zoo.keys(), | |
value=self.cfg["defaults"]["ransac_method"], | |
label="RANSAC Method", | |
interactive=True, | |
) | |
ransac_reproj_threshold = gr.Slider( | |
minimum=0.0, | |
maximum=12, | |
step=0.01, | |
label="Ransac Reproj threshold", | |
value=8.0, | |
) | |
ransac_confidence = gr.Slider( | |
minimum=0.0, | |
maximum=1, | |
step=0.00001, | |
label="Ransac Confidence", | |
value=self.cfg["defaults"]["ransac_confidence"], | |
) | |
ransac_max_iter = gr.Slider( | |
minimum=0.0, | |
maximum=100000, | |
step=100, | |
label="Ransac Iterations", | |
value=self.cfg["defaults"]["ransac_max_iter"], | |
) | |
button_ransac = gr.Button( | |
value="Rerun RANSAC", variant="primary" | |
) | |
with gr.Accordion("Geometry Setting", open=False): | |
with gr.Row(equal_height=False): | |
choice_geometry_type = gr.Radio( | |
["Fundamental", "Homography"], | |
label="Reconstruct Geometry", | |
value=self.cfg["defaults"][ | |
"setting_geometry" | |
], | |
) | |
# collect inputs | |
state_cache = gr.State({}) | |
inputs = [ | |
input_image0, | |
input_image1, | |
match_setting_threshold, | |
match_setting_max_features, | |
detect_keypoints_threshold, | |
matcher_list, | |
ransac_method, | |
ransac_reproj_threshold, | |
ransac_confidence, | |
ransac_max_iter, | |
choice_geometry_type, | |
gr.State(self.matcher_zoo), | |
# state_cache, | |
] | |
# Add some examples | |
with gr.Row(): | |
# Example inputs | |
gr.Examples( | |
examples=gen_examples(), | |
inputs=inputs, | |
outputs=[], | |
fn=run_matching, | |
cache_examples=False, | |
label=( | |
"Examples (click one of the images below to Run" | |
" Match). Thx: WxBS" | |
), | |
) | |
with gr.Accordion("Supported Algorithms", open=False): | |
# add a table of supported algorithms | |
self.display_supported_algorithms() | |
with gr.Column(): | |
output_keypoints = gr.Image(label="Keypoints", type="numpy") | |
output_matches_raw = gr.Image( | |
label="Raw Matches", | |
type="numpy", | |
) | |
output_matches_ransac = gr.Image( | |
label="Ransac Matches", type="numpy" | |
) | |
with gr.Accordion( | |
"Open for More: Matches Statistics", open=False | |
): | |
matches_result_info = gr.JSON( | |
label="Matches Statistics" | |
) | |
matcher_info = gr.JSON(label="Match info") | |
with gr.Accordion( | |
"Open for More: Warped Image", open=False | |
): | |
output_wrapped = gr.Image( | |
label="Wrapped Pair", type="numpy" | |
) | |
with gr.Accordion( | |
"Open for More: Geometry info", open=False | |
): | |
geometry_result = gr.JSON( | |
label="Reconstructed Geometry" | |
) | |
# callbacks | |
match_image_src.change( | |
fn=self.ui_change_imagebox, | |
inputs=match_image_src, | |
outputs=input_image0, | |
) | |
match_image_src.change( | |
fn=self.ui_change_imagebox, | |
inputs=match_image_src, | |
outputs=input_image1, | |
) | |
# collect outputs | |
outputs = [ | |
output_keypoints, | |
output_matches_raw, | |
output_matches_ransac, | |
matches_result_info, | |
matcher_info, | |
geometry_result, | |
output_wrapped, | |
state_cache, | |
] | |
# button callbacks | |
button_run.click( | |
fn=run_matching, inputs=inputs, outputs=outputs | |
) | |
# Reset images | |
reset_outputs = [ | |
input_image0, | |
input_image1, | |
match_setting_threshold, | |
match_setting_max_features, | |
detect_keypoints_threshold, | |
matcher_list, | |
input_image0, | |
input_image1, | |
match_image_src, | |
output_keypoints, | |
output_matches_raw, | |
output_matches_ransac, | |
matches_result_info, | |
matcher_info, | |
output_wrapped, | |
geometry_result, | |
ransac_method, | |
ransac_reproj_threshold, | |
ransac_confidence, | |
ransac_max_iter, | |
choice_geometry_type, | |
] | |
button_reset.click( | |
fn=self.ui_reset_state, inputs=None, outputs=reset_outputs | |
) | |
# run ransac button action | |
button_ransac.click( | |
fn=run_ransac, | |
inputs=[ | |
state_cache, | |
choice_geometry_type, | |
ransac_method, | |
ransac_reproj_threshold, | |
ransac_confidence, | |
ransac_max_iter, | |
], | |
outputs=[ | |
output_matches_ransac, | |
matches_result_info, | |
output_wrapped, | |
], | |
) | |
# estimate geo | |
choice_geometry_type.change( | |
fn=generate_warp_images, | |
inputs=[ | |
input_image0, | |
input_image1, | |
geometry_result, | |
choice_geometry_type, | |
], | |
outputs=[output_wrapped, geometry_result], | |
) | |
def run(self): | |
self.app.queue().launch( | |
server_name=self.server_name, | |
server_port=self.server_port, | |
share=False, | |
) | |
def ui_change_imagebox(self, choice): | |
""" | |
Updates the image box with the given choice. | |
Args: | |
choice (list): The list of image sources to be displayed in the image box. | |
Returns: | |
dict: A dictionary containing the updated value, sources, and type for the image box. | |
""" | |
ret_dict = { | |
"value": None, # The updated value of the image box | |
"__type__": "update", # The type of update for the image box | |
} | |
if GRADIO_VERSION > "3": | |
return { | |
**ret_dict, | |
"sources": choice, # The list of image sources to be displayed | |
} | |
else: | |
return { | |
**ret_dict, | |
"source": choice, # The list of image sources to be displayed | |
} | |
def ui_reset_state( | |
self, | |
*args: Any, | |
) -> Tuple[ | |
Optional[np.ndarray], | |
Optional[np.ndarray], | |
float, | |
int, | |
float, | |
str, | |
Dict[str, Any], | |
Dict[str, Any], | |
str, | |
Optional[np.ndarray], | |
Optional[np.ndarray], | |
Optional[np.ndarray], | |
Dict[str, Any], | |
Dict[str, Any], | |
Optional[np.ndarray], | |
Dict[str, Any], | |
str, | |
int, | |
float, | |
int, | |
]: | |
""" | |
Reset the state of the UI. | |
Returns: | |
tuple: A tuple containing the initial values for the UI state. | |
""" | |
key: str = list(self.matcher_zoo.keys())[ | |
0 | |
] # Get the first key from matcher_zoo | |
return ( | |
None, # image0: Optional[np.ndarray] | |
None, # image1: Optional[np.ndarray] | |
self.cfg["defaults"][ | |
"match_threshold" | |
], # matching_threshold: float | |
self.cfg["defaults"]["max_keypoints"], # max_features: int | |
self.cfg["defaults"][ | |
"keypoint_threshold" | |
], # keypoint_threshold: float | |
key, # matcher: str | |
self.ui_change_imagebox("upload"), # input image0: Dict[str, Any] | |
self.ui_change_imagebox("upload"), # input image1: Dict[str, Any] | |
"upload", # match_image_src: str | |
None, # keypoints: Optional[np.ndarray] | |
None, # raw matches: Optional[np.ndarray] | |
None, # ransac matches: Optional[np.ndarray] | |
{}, # matches result info: Dict[str, Any] | |
{}, # matcher config: Dict[str, Any] | |
None, # warped image: Optional[np.ndarray] | |
{}, # geometry result: Dict[str, Any] | |
self.cfg["defaults"]["ransac_method"], # ransac_method: str | |
self.cfg["defaults"][ | |
"ransac_reproj_threshold" | |
], # ransac_reproj_threshold: float | |
self.cfg["defaults"][ | |
"ransac_confidence" | |
], # ransac_confidence: float | |
self.cfg["defaults"]["ransac_max_iter"], # ransac_max_iter: int | |
self.cfg["defaults"]["setting_geometry"], # geometry: str | |
) | |
def display_supported_algorithms(self, style="tab"): | |
def get_link(link, tag="Link"): | |
return "[{}]({})".format(tag, link) if link is not None else "None" | |
data = [] | |
cfg = self.cfg["matcher_zoo"] | |
if style == "md": | |
markdown_table = "| Algo. | Conference | Code | Project | Paper |\n" | |
markdown_table += ( | |
"| ----- | ---------- | ---- | ------- | ----- |\n" | |
) | |
for k, v in cfg.items(): | |
if not v["info"]["display"]: | |
continue | |
github_link = get_link(v["info"]["github"]) | |
project_link = get_link(v["info"]["project"]) | |
paper_link = get_link( | |
v["info"]["paper"], | |
( | |
Path(v["info"]["paper"]).name[-10:] | |
if v["info"]["paper"] is not None | |
else "Link" | |
), | |
) | |
markdown_table += "{}|{}|{}|{}|{}\n".format( | |
v["info"]["name"], # display name | |
v["info"]["source"], | |
github_link, | |
project_link, | |
paper_link, | |
) | |
return gr.Markdown(markdown_table) | |
elif style == "tab": | |
for k, v in cfg.items(): | |
if not v["info"].get("display", True): | |
continue | |
data.append( | |
[ | |
v["info"]["name"], | |
v["info"]["source"], | |
v["info"]["github"], | |
v["info"]["paper"], | |
v["info"]["project"], | |
] | |
) | |
tab = gr.Dataframe( | |
headers=["Algo.", "Conference", "Code", "Paper", "Project"], | |
datatype=["str", "str", "str", "str", "str"], | |
col_count=(5, "fixed"), | |
value=data, | |
# wrap=True, | |
# min_width = 1000, | |
# height=1000, | |
) | |
return tab | |