Spaces:
Running
Running
from PIL import Image | |
import numpy as np | |
import numpy as np | |
import cv2 as cv | |
import matplotlib.pyplot as plt | |
if __name__ == "__main__": | |
from argparse import ArgumentParser | |
parser = ArgumentParser() | |
parser.add_argument("--im_A_path", default="assets/toronto_A.jpg", type=str) | |
parser.add_argument("--im_B_path", default="assets/toronto_B.jpg", type=str) | |
parser.add_argument("--save_path", default="demo/roma_warp_toronto.jpg", type=str) | |
args, _ = parser.parse_known_args() | |
im1_path = args.im_A_path | |
im2_path = args.im_B_path | |
save_path = args.save_path | |
img1 = cv.imread(im1_path,cv.IMREAD_GRAYSCALE) # queryImage | |
img2 = cv.imread(im2_path,cv.IMREAD_GRAYSCALE) # trainImage | |
# Initiate SIFT detector | |
sift = cv.SIFT_create() | |
# find the keypoints and descriptors with SIFT | |
kp1, des1 = sift.detectAndCompute(img1,None) | |
kp2, des2 = sift.detectAndCompute(img2,None) | |
# BFMatcher with default params | |
bf = cv.BFMatcher() | |
matches = bf.knnMatch(des1,des2,k=2) | |
# Apply ratio test | |
good = [] | |
for m,n in matches: | |
if m.distance < 0.75*n.distance: | |
good.append([m]) | |
# cv.drawMatchesKnn expects list of lists as matches. | |
draw_params = dict(matchColor = (255,0,0), # draw matches in red color | |
singlePointColor = None, | |
flags = 2) | |
img3 = cv.drawMatchesKnn(img1,kp1,img2,kp2,good,None,**draw_params) | |
Image.fromarray(img3).save("demo/sift_matches.png") | |