Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# References: | |
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py | |
from functools import partial | |
import math | |
import logging | |
from typing import Sequence, Tuple, Union, Callable | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from torch.nn.init import trunc_normal_ | |
from .layers import ( | |
Mlp, | |
PatchEmbed, | |
SwiGLUFFNFused, | |
MemEffAttention, | |
NestedTensorBlock as Block, | |
) | |
def named_apply( | |
fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False | |
) -> nn.Module: | |
if not depth_first and include_root: | |
fn(module=module, name=name) | |
for child_name, child_module in module.named_children(): | |
child_name = ".".join((name, child_name)) if name else child_name | |
named_apply( | |
fn=fn, | |
module=child_module, | |
name=child_name, | |
depth_first=depth_first, | |
include_root=True, | |
) | |
if depth_first and include_root: | |
fn(module=module, name=name) | |
return module | |
class BlockChunk(nn.ModuleList): | |
def forward(self, x): | |
for b in self: | |
x = b(x) | |
return x | |
class DinoVisionTransformer(nn.Module): | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
ffn_bias=True, | |
proj_bias=True, | |
drop_path_rate=0.0, | |
drop_path_uniform=False, | |
init_values=None, # for layerscale: None or 0 => no layerscale | |
embed_layer=PatchEmbed, | |
act_layer=nn.GELU, | |
block_fn=Block, | |
ffn_layer="mlp", | |
block_chunks=1, | |
): | |
""" | |
Args: | |
img_size (int, tuple): input image size | |
patch_size (int, tuple): patch size | |
in_chans (int): number of input channels | |
embed_dim (int): embedding dimension | |
depth (int): depth of transformer | |
num_heads (int): number of attention heads | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
qkv_bias (bool): enable bias for qkv if True | |
proj_bias (bool): enable bias for proj in attn if True | |
ffn_bias (bool): enable bias for ffn if True | |
drop_path_rate (float): stochastic depth rate | |
drop_path_uniform (bool): apply uniform drop rate across blocks | |
weight_init (str): weight init scheme | |
init_values (float): layer-scale init values | |
embed_layer (nn.Module): patch embedding layer | |
act_layer (nn.Module): MLP activation layer | |
block_fn (nn.Module): transformer block class | |
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" | |
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap | |
""" | |
super().__init__() | |
norm_layer = partial(nn.LayerNorm, eps=1e-6) | |
self.num_features = ( | |
self.embed_dim | |
) = embed_dim # num_features for consistency with other models | |
self.num_tokens = 1 | |
self.n_blocks = depth | |
self.num_heads = num_heads | |
self.patch_size = patch_size | |
self.patch_embed = embed_layer( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, num_patches + self.num_tokens, embed_dim) | |
) | |
if drop_path_uniform is True: | |
dpr = [drop_path_rate] * depth | |
else: | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, depth) | |
] # stochastic depth decay rule | |
if ffn_layer == "mlp": | |
ffn_layer = Mlp | |
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu": | |
ffn_layer = SwiGLUFFNFused | |
elif ffn_layer == "identity": | |
def f(*args, **kwargs): | |
return nn.Identity() | |
ffn_layer = f | |
else: | |
raise NotImplementedError | |
blocks_list = [ | |
block_fn( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
proj_bias=proj_bias, | |
ffn_bias=ffn_bias, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
ffn_layer=ffn_layer, | |
init_values=init_values, | |
) | |
for i in range(depth) | |
] | |
if block_chunks > 0: | |
self.chunked_blocks = True | |
chunked_blocks = [] | |
chunksize = depth // block_chunks | |
for i in range(0, depth, chunksize): | |
# this is to keep the block index consistent if we chunk the block list | |
chunked_blocks.append( | |
[nn.Identity()] * i + blocks_list[i : i + chunksize] | |
) | |
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks]) | |
else: | |
self.chunked_blocks = False | |
self.blocks = nn.ModuleList(blocks_list) | |
self.norm = norm_layer(embed_dim) | |
self.head = nn.Identity() | |
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) | |
self.init_weights() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def device(self): | |
return self.cls_token.device | |
def init_weights(self): | |
trunc_normal_(self.pos_embed, std=0.02) | |
nn.init.normal_(self.cls_token, std=1e-6) | |
named_apply(init_weights_vit_timm, self) | |
def interpolate_pos_encoding(self, x, w, h): | |
previous_dtype = x.dtype | |
npatch = x.shape[1] - 1 | |
N = self.pos_embed.shape[1] - 1 | |
if npatch == N and w == h: | |
return self.pos_embed | |
pos_embed = self.pos_embed.float() | |
class_pos_embed = pos_embed[:, 0] | |
patch_pos_embed = pos_embed[:, 1:] | |
dim = x.shape[-1] | |
w0 = w // self.patch_size | |
h0 = h // self.patch_size | |
# we add a small number to avoid floating point error in the interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
w0, h0 = w0 + 0.1, h0 + 0.1 | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed.reshape( | |
1, int(math.sqrt(N)), int(math.sqrt(N)), dim | |
).permute(0, 3, 1, 2), | |
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), | |
mode="bicubic", | |
) | |
assert ( | |
int(w0) == patch_pos_embed.shape[-2] | |
and int(h0) == patch_pos_embed.shape[-1] | |
) | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to( | |
previous_dtype | |
) | |
def prepare_tokens_with_masks(self, x, masks=None): | |
B, nc, w, h = x.shape | |
x = self.patch_embed(x) | |
if masks is not None: | |
x = torch.where( | |
masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x | |
) | |
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = x + self.interpolate_pos_encoding(x, w, h) | |
return x | |
def forward_features_list(self, x_list, masks_list): | |
x = [ | |
self.prepare_tokens_with_masks(x, masks) | |
for x, masks in zip(x_list, masks_list) | |
] | |
for blk in self.blocks: | |
x = blk(x) | |
all_x = x | |
output = [] | |
for x, masks in zip(all_x, masks_list): | |
x_norm = self.norm(x) | |
output.append( | |
{ | |
"x_norm_clstoken": x_norm[:, 0], | |
"x_norm_patchtokens": x_norm[:, 1:], | |
"x_prenorm": x, | |
"masks": masks, | |
} | |
) | |
return output | |
def forward_features(self, x, masks=None): | |
if isinstance(x, list): | |
return self.forward_features_list(x, masks) | |
x = self.prepare_tokens_with_masks(x, masks) | |
for blk in self.blocks: | |
x = blk(x) | |
x_norm = self.norm(x) | |
return { | |
"x_norm_clstoken": x_norm[:, 0], | |
"x_norm_patchtokens": x_norm[:, 1:], | |
"x_prenorm": x, | |
"masks": masks, | |
} | |
def _get_intermediate_layers_not_chunked(self, x, n=1): | |
x = self.prepare_tokens_with_masks(x) | |
# If n is an int, take the n last blocks. If it's a list, take them | |
output, total_block_len = [], len(self.blocks) | |
blocks_to_take = ( | |
range(total_block_len - n, total_block_len) if isinstance(n, int) else n | |
) | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
if i in blocks_to_take: | |
output.append(x) | |
assert len(output) == len( | |
blocks_to_take | |
), f"only {len(output)} / {len(blocks_to_take)} blocks found" | |
return output | |
def _get_intermediate_layers_chunked(self, x, n=1): | |
x = self.prepare_tokens_with_masks(x) | |
output, i, total_block_len = [], 0, len(self.blocks[-1]) | |
# If n is an int, take the n last blocks. If it's a list, take them | |
blocks_to_take = ( | |
range(total_block_len - n, total_block_len) if isinstance(n, int) else n | |
) | |
for block_chunk in self.blocks: | |
for blk in block_chunk[i:]: # Passing the nn.Identity() | |
x = blk(x) | |
if i in blocks_to_take: | |
output.append(x) | |
i += 1 | |
assert len(output) == len( | |
blocks_to_take | |
), f"only {len(output)} / {len(blocks_to_take)} blocks found" | |
return output | |
def get_intermediate_layers( | |
self, | |
x: torch.Tensor, | |
n: Union[int, Sequence] = 1, # Layers or n last layers to take | |
reshape: bool = False, | |
return_class_token: bool = False, | |
norm=True, | |
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: | |
if self.chunked_blocks: | |
outputs = self._get_intermediate_layers_chunked(x, n) | |
else: | |
outputs = self._get_intermediate_layers_not_chunked(x, n) | |
if norm: | |
outputs = [self.norm(out) for out in outputs] | |
class_tokens = [out[:, 0] for out in outputs] | |
outputs = [out[:, 1:] for out in outputs] | |
if reshape: | |
B, _, w, h = x.shape | |
outputs = [ | |
out.reshape(B, w // self.patch_size, h // self.patch_size, -1) | |
.permute(0, 3, 1, 2) | |
.contiguous() | |
for out in outputs | |
] | |
if return_class_token: | |
return tuple(zip(outputs, class_tokens)) | |
return tuple(outputs) | |
def forward(self, *args, is_training=False, **kwargs): | |
ret = self.forward_features(*args, **kwargs) | |
if is_training: | |
return ret | |
else: | |
return self.head(ret["x_norm_clstoken"]) | |
def init_weights_vit_timm(module: nn.Module, name: str = ""): | |
"""ViT weight initialization, original timm impl (for reproducibility)""" | |
if isinstance(module, nn.Linear): | |
trunc_normal_(module.weight, std=0.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
def vit_small(patch_size=16, **kwargs): | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=384, | |
depth=12, | |
num_heads=6, | |
mlp_ratio=4, | |
block_fn=partial(Block, attn_class=MemEffAttention), | |
**kwargs, | |
) | |
return model | |
def vit_base(patch_size=16, **kwargs): | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
block_fn=partial(Block, attn_class=MemEffAttention), | |
**kwargs, | |
) | |
return model | |
def vit_large(patch_size=16, **kwargs): | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4, | |
block_fn=partial(Block, attn_class=MemEffAttention), | |
**kwargs, | |
) | |
return model | |
def vit_giant2(patch_size=16, **kwargs): | |
""" | |
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64 | |
""" | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=1536, | |
depth=40, | |
num_heads=24, | |
mlp_ratio=4, | |
block_fn=partial(Block, attn_class=MemEffAttention), | |
**kwargs, | |
) | |
return model | |