Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from dkm import * | |
from .local_corr import LocalCorr | |
from .corr_channels import NormedCorr | |
from torchvision.models import resnet as tv_resnet | |
dkm_pretrained_urls = { | |
"DKM": { | |
"mega_synthetic": "https://github.com/Parskatt/storage/releases/download/dkm_mega_synthetic/dkm_mega_synthetic.pth", | |
"mega": "https://github.com/Parskatt/storage/releases/download/dkm_mega/dkm_mega.pth", | |
}, | |
"DKMv2": { | |
"outdoor": "https://github.com/Parskatt/storage/releases/download/dkmv2/dkm_v2_outdoor.pth", | |
"indoor": "https://github.com/Parskatt/storage/releases/download/dkmv2/dkm_v2_indoor.pth", | |
}, | |
} | |
def DKM(pretrained=True, version="mega_synthetic", device=None): | |
if device is None: | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
gp_dim = 256 | |
dfn_dim = 384 | |
feat_dim = 256 | |
coordinate_decoder = DFN( | |
internal_dim=dfn_dim, | |
feat_input_modules=nn.ModuleDict( | |
{ | |
"32": nn.Conv2d(512, feat_dim, 1, 1), | |
"16": nn.Conv2d(512, feat_dim, 1, 1), | |
} | |
), | |
pred_input_modules=nn.ModuleDict( | |
{ | |
"32": nn.Identity(), | |
"16": nn.Identity(), | |
} | |
), | |
rrb_d_dict=nn.ModuleDict( | |
{ | |
"32": RRB(gp_dim + feat_dim, dfn_dim), | |
"16": RRB(gp_dim + feat_dim, dfn_dim), | |
} | |
), | |
cab_dict=nn.ModuleDict( | |
{ | |
"32": CAB(2 * dfn_dim, dfn_dim), | |
"16": CAB(2 * dfn_dim, dfn_dim), | |
} | |
), | |
rrb_u_dict=nn.ModuleDict( | |
{ | |
"32": RRB(dfn_dim, dfn_dim), | |
"16": RRB(dfn_dim, dfn_dim), | |
} | |
), | |
terminal_module=nn.ModuleDict( | |
{ | |
"32": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
"16": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
} | |
), | |
) | |
dw = True | |
hidden_blocks = 8 | |
kernel_size = 5 | |
conv_refiner = nn.ModuleDict( | |
{ | |
"16": ConvRefiner( | |
2 * 512, | |
1024, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"8": ConvRefiner( | |
2 * 512, | |
1024, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"4": ConvRefiner( | |
2 * 256, | |
512, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"2": ConvRefiner( | |
2 * 64, | |
128, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"1": ConvRefiner( | |
2 * 3, | |
24, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
} | |
) | |
kernel_temperature = 0.2 | |
learn_temperature = False | |
no_cov = True | |
kernel = CosKernel | |
only_attention = False | |
basis = "fourier" | |
gp32 = GP( | |
kernel, | |
T=kernel_temperature, | |
learn_temperature=learn_temperature, | |
only_attention=only_attention, | |
gp_dim=gp_dim, | |
basis=basis, | |
no_cov=no_cov, | |
) | |
gp16 = GP( | |
kernel, | |
T=kernel_temperature, | |
learn_temperature=learn_temperature, | |
only_attention=only_attention, | |
gp_dim=gp_dim, | |
basis=basis, | |
no_cov=no_cov, | |
) | |
gps = nn.ModuleDict({"32": gp32, "16": gp16}) | |
proj = nn.ModuleDict( | |
{"16": nn.Conv2d(1024, 512, 1, 1), "32": nn.Conv2d(2048, 512, 1, 1)} | |
) | |
decoder = Decoder(coordinate_decoder, gps, proj, conv_refiner, detach=True) | |
h, w = 384, 512 | |
encoder = Encoder( | |
tv_resnet.resnet50(pretrained=not pretrained), | |
) # only load pretrained weights if not loading a pretrained matcher ;) | |
matcher = RegressionMatcher(encoder, decoder, h=h, w=w).to(device) | |
if pretrained: | |
weights = torch.hub.load_state_dict_from_url( | |
dkm_pretrained_urls["DKM"][version] | |
) | |
matcher.load_state_dict(weights) | |
return matcher | |
def DKMv2(pretrained=True, version="outdoor", resolution="low", **kwargs): | |
gp_dim = 256 | |
dfn_dim = 384 | |
feat_dim = 256 | |
coordinate_decoder = DFN( | |
internal_dim=dfn_dim, | |
feat_input_modules=nn.ModuleDict( | |
{ | |
"32": nn.Conv2d(512, feat_dim, 1, 1), | |
"16": nn.Conv2d(512, feat_dim, 1, 1), | |
} | |
), | |
pred_input_modules=nn.ModuleDict( | |
{ | |
"32": nn.Identity(), | |
"16": nn.Identity(), | |
} | |
), | |
rrb_d_dict=nn.ModuleDict( | |
{ | |
"32": RRB(gp_dim + feat_dim, dfn_dim), | |
"16": RRB(gp_dim + feat_dim, dfn_dim), | |
} | |
), | |
cab_dict=nn.ModuleDict( | |
{ | |
"32": CAB(2 * dfn_dim, dfn_dim), | |
"16": CAB(2 * dfn_dim, dfn_dim), | |
} | |
), | |
rrb_u_dict=nn.ModuleDict( | |
{ | |
"32": RRB(dfn_dim, dfn_dim), | |
"16": RRB(dfn_dim, dfn_dim), | |
} | |
), | |
terminal_module=nn.ModuleDict( | |
{ | |
"32": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
"16": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
} | |
), | |
) | |
dw = True | |
hidden_blocks = 8 | |
kernel_size = 5 | |
displacement_emb = "linear" | |
conv_refiner = nn.ModuleDict( | |
{ | |
"16": ConvRefiner( | |
2 * 512 + 128, | |
1024 + 128, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
displacement_emb=displacement_emb, | |
displacement_emb_dim=128, | |
), | |
"8": ConvRefiner( | |
2 * 512 + 64, | |
1024 + 64, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
displacement_emb=displacement_emb, | |
displacement_emb_dim=64, | |
), | |
"4": ConvRefiner( | |
2 * 256 + 32, | |
512 + 32, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
displacement_emb=displacement_emb, | |
displacement_emb_dim=32, | |
), | |
"2": ConvRefiner( | |
2 * 64 + 16, | |
128 + 16, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
displacement_emb=displacement_emb, | |
displacement_emb_dim=16, | |
), | |
"1": ConvRefiner( | |
2 * 3 + 6, | |
24, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
displacement_emb=displacement_emb, | |
displacement_emb_dim=6, | |
), | |
} | |
) | |
kernel_temperature = 0.2 | |
learn_temperature = False | |
no_cov = True | |
kernel = CosKernel | |
only_attention = False | |
basis = "fourier" | |
gp32 = GP( | |
kernel, | |
T=kernel_temperature, | |
learn_temperature=learn_temperature, | |
only_attention=only_attention, | |
gp_dim=gp_dim, | |
basis=basis, | |
no_cov=no_cov, | |
) | |
gp16 = GP( | |
kernel, | |
T=kernel_temperature, | |
learn_temperature=learn_temperature, | |
only_attention=only_attention, | |
gp_dim=gp_dim, | |
basis=basis, | |
no_cov=no_cov, | |
) | |
gps = nn.ModuleDict({"32": gp32, "16": gp16}) | |
proj = nn.ModuleDict( | |
{"16": nn.Conv2d(1024, 512, 1, 1), "32": nn.Conv2d(2048, 512, 1, 1)} | |
) | |
decoder = Decoder(coordinate_decoder, gps, proj, conv_refiner, detach=True) | |
if resolution == "low": | |
h, w = 384, 512 | |
elif resolution == "high": | |
h, w = 480, 640 | |
encoder = Encoder( | |
tv_resnet.resnet50(pretrained=not pretrained), | |
) # only load pretrained weights if not loading a pretrained matcher ;) | |
matcher = RegressionMatcher(encoder, decoder, h=h, w=w, **kwargs).to(device) | |
if pretrained: | |
try: | |
weights = torch.hub.load_state_dict_from_url( | |
dkm_pretrained_urls["DKMv2"][version] | |
) | |
except: | |
weights = torch.load(dkm_pretrained_urls["DKMv2"][version]) | |
matcher.load_state_dict(weights) | |
return matcher | |
def local_corr(pretrained=True, version="mega_synthetic"): | |
gp_dim = 256 | |
dfn_dim = 384 | |
feat_dim = 256 | |
coordinate_decoder = DFN( | |
internal_dim=dfn_dim, | |
feat_input_modules=nn.ModuleDict( | |
{ | |
"32": nn.Conv2d(512, feat_dim, 1, 1), | |
"16": nn.Conv2d(512, feat_dim, 1, 1), | |
} | |
), | |
pred_input_modules=nn.ModuleDict( | |
{ | |
"32": nn.Identity(), | |
"16": nn.Identity(), | |
} | |
), | |
rrb_d_dict=nn.ModuleDict( | |
{ | |
"32": RRB(gp_dim + feat_dim, dfn_dim), | |
"16": RRB(gp_dim + feat_dim, dfn_dim), | |
} | |
), | |
cab_dict=nn.ModuleDict( | |
{ | |
"32": CAB(2 * dfn_dim, dfn_dim), | |
"16": CAB(2 * dfn_dim, dfn_dim), | |
} | |
), | |
rrb_u_dict=nn.ModuleDict( | |
{ | |
"32": RRB(dfn_dim, dfn_dim), | |
"16": RRB(dfn_dim, dfn_dim), | |
} | |
), | |
terminal_module=nn.ModuleDict( | |
{ | |
"32": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
"16": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
} | |
), | |
) | |
dw = True | |
hidden_blocks = 8 | |
kernel_size = 5 | |
conv_refiner = nn.ModuleDict( | |
{ | |
"16": LocalCorr( | |
81, | |
81 * 12, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"8": LocalCorr( | |
81, | |
81 * 12, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"4": LocalCorr( | |
81, | |
81 * 6, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"2": LocalCorr( | |
81, | |
81, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"1": ConvRefiner( | |
2 * 3, | |
24, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
} | |
) | |
kernel_temperature = 0.2 | |
learn_temperature = False | |
no_cov = True | |
kernel = CosKernel | |
only_attention = False | |
basis = "fourier" | |
gp32 = GP( | |
kernel, | |
T=kernel_temperature, | |
learn_temperature=learn_temperature, | |
only_attention=only_attention, | |
gp_dim=gp_dim, | |
basis=basis, | |
no_cov=no_cov, | |
) | |
gp16 = GP( | |
kernel, | |
T=kernel_temperature, | |
learn_temperature=learn_temperature, | |
only_attention=only_attention, | |
gp_dim=gp_dim, | |
basis=basis, | |
no_cov=no_cov, | |
) | |
gps = nn.ModuleDict({"32": gp32, "16": gp16}) | |
proj = nn.ModuleDict( | |
{"16": nn.Conv2d(1024, 512, 1, 1), "32": nn.Conv2d(2048, 512, 1, 1)} | |
) | |
decoder = Decoder(coordinate_decoder, gps, proj, conv_refiner, detach=True) | |
h, w = 384, 512 | |
encoder = Encoder( | |
tv_resnet.resnet50(pretrained=not pretrained) | |
) # only load pretrained weights if not loading a pretrained matcher ;) | |
matcher = RegressionMatcher(encoder, decoder, h=h, w=w).to(device) | |
if pretrained: | |
weights = torch.hub.load_state_dict_from_url( | |
dkm_pretrained_urls["local_corr"][version] | |
) | |
matcher.load_state_dict(weights) | |
return matcher | |
def corr_channels(pretrained=True, version="mega_synthetic"): | |
h, w = 384, 512 | |
gp_dim = (h // 32) * (w // 32), (h // 16) * (w // 16) | |
dfn_dim = 384 | |
feat_dim = 256 | |
coordinate_decoder = DFN( | |
internal_dim=dfn_dim, | |
feat_input_modules=nn.ModuleDict( | |
{ | |
"32": nn.Conv2d(512, feat_dim, 1, 1), | |
"16": nn.Conv2d(512, feat_dim, 1, 1), | |
} | |
), | |
pred_input_modules=nn.ModuleDict( | |
{ | |
"32": nn.Identity(), | |
"16": nn.Identity(), | |
} | |
), | |
rrb_d_dict=nn.ModuleDict( | |
{ | |
"32": RRB(gp_dim[0] + feat_dim, dfn_dim), | |
"16": RRB(gp_dim[1] + feat_dim, dfn_dim), | |
} | |
), | |
cab_dict=nn.ModuleDict( | |
{ | |
"32": CAB(2 * dfn_dim, dfn_dim), | |
"16": CAB(2 * dfn_dim, dfn_dim), | |
} | |
), | |
rrb_u_dict=nn.ModuleDict( | |
{ | |
"32": RRB(dfn_dim, dfn_dim), | |
"16": RRB(dfn_dim, dfn_dim), | |
} | |
), | |
terminal_module=nn.ModuleDict( | |
{ | |
"32": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
"16": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
} | |
), | |
) | |
dw = True | |
hidden_blocks = 8 | |
kernel_size = 5 | |
conv_refiner = nn.ModuleDict( | |
{ | |
"16": ConvRefiner( | |
2 * 512, | |
1024, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"8": ConvRefiner( | |
2 * 512, | |
1024, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"4": ConvRefiner( | |
2 * 256, | |
512, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"2": ConvRefiner( | |
2 * 64, | |
128, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"1": ConvRefiner( | |
2 * 3, | |
24, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
} | |
) | |
gp32 = NormedCorr() | |
gp16 = NormedCorr() | |
gps = nn.ModuleDict({"32": gp32, "16": gp16}) | |
proj = nn.ModuleDict( | |
{"16": nn.Conv2d(1024, 512, 1, 1), "32": nn.Conv2d(2048, 512, 1, 1)} | |
) | |
decoder = Decoder(coordinate_decoder, gps, proj, conv_refiner, detach=True) | |
h, w = 384, 512 | |
encoder = Encoder( | |
tv_resnet.resnet50(pretrained=not pretrained) | |
) # only load pretrained weights if not loading a pretrained matcher ;) | |
matcher = RegressionMatcher(encoder, decoder, h=h, w=w).to(device) | |
if pretrained: | |
weights = torch.hub.load_state_dict_from_url( | |
dkm_pretrained_urls["corr_channels"][version] | |
) | |
matcher.load_state_dict(weights) | |
return matcher | |
def baseline(pretrained=True, version="mega_synthetic"): | |
h, w = 384, 512 | |
gp_dim = (h // 32) * (w // 32), (h // 16) * (w // 16) | |
dfn_dim = 384 | |
feat_dim = 256 | |
coordinate_decoder = DFN( | |
internal_dim=dfn_dim, | |
feat_input_modules=nn.ModuleDict( | |
{ | |
"32": nn.Conv2d(512, feat_dim, 1, 1), | |
"16": nn.Conv2d(512, feat_dim, 1, 1), | |
} | |
), | |
pred_input_modules=nn.ModuleDict( | |
{ | |
"32": nn.Identity(), | |
"16": nn.Identity(), | |
} | |
), | |
rrb_d_dict=nn.ModuleDict( | |
{ | |
"32": RRB(gp_dim[0] + feat_dim, dfn_dim), | |
"16": RRB(gp_dim[1] + feat_dim, dfn_dim), | |
} | |
), | |
cab_dict=nn.ModuleDict( | |
{ | |
"32": CAB(2 * dfn_dim, dfn_dim), | |
"16": CAB(2 * dfn_dim, dfn_dim), | |
} | |
), | |
rrb_u_dict=nn.ModuleDict( | |
{ | |
"32": RRB(dfn_dim, dfn_dim), | |
"16": RRB(dfn_dim, dfn_dim), | |
} | |
), | |
terminal_module=nn.ModuleDict( | |
{ | |
"32": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
"16": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
} | |
), | |
) | |
dw = True | |
hidden_blocks = 8 | |
kernel_size = 5 | |
conv_refiner = nn.ModuleDict( | |
{ | |
"16": LocalCorr( | |
81, | |
81 * 12, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"8": LocalCorr( | |
81, | |
81 * 12, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"4": LocalCorr( | |
81, | |
81 * 6, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"2": LocalCorr( | |
81, | |
81, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"1": ConvRefiner( | |
2 * 3, | |
24, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
} | |
) | |
gp32 = NormedCorr() | |
gp16 = NormedCorr() | |
gps = nn.ModuleDict({"32": gp32, "16": gp16}) | |
proj = nn.ModuleDict( | |
{"16": nn.Conv2d(1024, 512, 1, 1), "32": nn.Conv2d(2048, 512, 1, 1)} | |
) | |
decoder = Decoder(coordinate_decoder, gps, proj, conv_refiner, detach=True) | |
h, w = 384, 512 | |
encoder = Encoder( | |
tv_resnet.resnet50(pretrained=not pretrained) | |
) # only load pretrained weights if not loading a pretrained matcher ;) | |
matcher = RegressionMatcher(encoder, decoder, h=h, w=w).to(device) | |
if pretrained: | |
weights = torch.hub.load_state_dict_from_url( | |
dkm_pretrained_urls["baseline"][version] | |
) | |
matcher.load_state_dict(weights) | |
return matcher | |
def linear(pretrained=True, version="mega_synthetic"): | |
gp_dim = 256 | |
dfn_dim = 384 | |
feat_dim = 256 | |
coordinate_decoder = DFN( | |
internal_dim=dfn_dim, | |
feat_input_modules=nn.ModuleDict( | |
{ | |
"32": nn.Conv2d(512, feat_dim, 1, 1), | |
"16": nn.Conv2d(512, feat_dim, 1, 1), | |
} | |
), | |
pred_input_modules=nn.ModuleDict( | |
{ | |
"32": nn.Identity(), | |
"16": nn.Identity(), | |
} | |
), | |
rrb_d_dict=nn.ModuleDict( | |
{ | |
"32": RRB(gp_dim + feat_dim, dfn_dim), | |
"16": RRB(gp_dim + feat_dim, dfn_dim), | |
} | |
), | |
cab_dict=nn.ModuleDict( | |
{ | |
"32": CAB(2 * dfn_dim, dfn_dim), | |
"16": CAB(2 * dfn_dim, dfn_dim), | |
} | |
), | |
rrb_u_dict=nn.ModuleDict( | |
{ | |
"32": RRB(dfn_dim, dfn_dim), | |
"16": RRB(dfn_dim, dfn_dim), | |
} | |
), | |
terminal_module=nn.ModuleDict( | |
{ | |
"32": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
"16": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
} | |
), | |
) | |
dw = True | |
hidden_blocks = 8 | |
kernel_size = 5 | |
conv_refiner = nn.ModuleDict( | |
{ | |
"16": ConvRefiner( | |
2 * 512, | |
1024, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"8": ConvRefiner( | |
2 * 512, | |
1024, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"4": ConvRefiner( | |
2 * 256, | |
512, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"2": ConvRefiner( | |
2 * 64, | |
128, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
"1": ConvRefiner( | |
2 * 3, | |
24, | |
3, | |
kernel_size=kernel_size, | |
dw=dw, | |
hidden_blocks=hidden_blocks, | |
), | |
} | |
) | |
kernel_temperature = 0.2 | |
learn_temperature = False | |
no_cov = True | |
kernel = CosKernel | |
only_attention = False | |
basis = "linear" | |
gp32 = GP( | |
kernel, | |
T=kernel_temperature, | |
learn_temperature=learn_temperature, | |
only_attention=only_attention, | |
gp_dim=gp_dim, | |
basis=basis, | |
no_cov=no_cov, | |
) | |
gp16 = GP( | |
kernel, | |
T=kernel_temperature, | |
learn_temperature=learn_temperature, | |
only_attention=only_attention, | |
gp_dim=gp_dim, | |
basis=basis, | |
no_cov=no_cov, | |
) | |
gps = nn.ModuleDict({"32": gp32, "16": gp16}) | |
proj = nn.ModuleDict( | |
{"16": nn.Conv2d(1024, 512, 1, 1), "32": nn.Conv2d(2048, 512, 1, 1)} | |
) | |
decoder = Decoder(coordinate_decoder, gps, proj, conv_refiner, detach=True) | |
h, w = 384, 512 | |
encoder = Encoder( | |
tv_resnet.resnet50(pretrained=not pretrained) | |
) # only load pretrained weights if not loading a pretrained matcher ;) | |
matcher = RegressionMatcher(encoder, decoder, h=h, w=w).to(device) | |
if pretrained: | |
weights = torch.hub.load_state_dict_from_url( | |
dkm_pretrained_urls["linear"][version] | |
) | |
matcher.load_state_dict(weights) | |
return matcher | |