Realcat
add: GIM (https://github.com/xuelunshen/gim)
4dfb78b
raw
history blame
20.3 kB
import argparse
import logging
import shutil
import tarfile
from collections.abc import Iterable
from pathlib import Path
import h5py
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
import torch
from omegaconf import OmegaConf
from ..geometry.wrappers import Camera, Pose
from ..models.cache_loader import CacheLoader
from ..settings import DATA_PATH
from ..utils.image import ImagePreprocessor, load_image
from ..utils.tools import fork_rng
from ..visualization.viz2d import plot_heatmaps, plot_image_grid
from .base_dataset import BaseDataset
from .utils import rotate_intrinsics, rotate_pose_inplane, scale_intrinsics
logger = logging.getLogger(__name__)
scene_lists_path = Path(__file__).parent / "megadepth_scene_lists"
def sample_n(data, num, seed=None):
if len(data) > num:
selected = np.random.RandomState(seed).choice(len(data), num, replace=False)
return data[selected]
else:
return data
class MegaDepth(BaseDataset):
default_conf = {
# paths
"data_dir": "megadepth/",
"depth_subpath": "depth_undistorted/",
"image_subpath": "Undistorted_SfM/",
"info_dir": "scene_info/", # @TODO: intrinsics problem?
# Training
"train_split": "train_scenes_clean.txt",
"train_num_per_scene": 500,
# Validation
"val_split": "valid_scenes_clean.txt",
"val_num_per_scene": None,
"val_pairs": None,
# Test
"test_split": "test_scenes_clean.txt",
"test_num_per_scene": None,
"test_pairs": None,
# data sampling
"views": 2,
"min_overlap": 0.3, # only with D2-Net format
"max_overlap": 1.0, # only with D2-Net format
"num_overlap_bins": 1,
"sort_by_overlap": False,
"triplet_enforce_overlap": False, # only with views==3
# image options
"read_depth": True,
"read_image": True,
"grayscale": False,
"preprocessing": ImagePreprocessor.default_conf,
"p_rotate": 0.0, # probability to rotate image by +/- 90°
"reseed": False,
"seed": 0,
# features from cache
"load_features": {
"do": False,
**CacheLoader.default_conf,
"collate": False,
},
}
def _init(self, conf):
if not (DATA_PATH / conf.data_dir).exists():
logger.info("Downloading the MegaDepth dataset.")
self.download()
def download(self):
data_dir = DATA_PATH / self.conf.data_dir
tmp_dir = data_dir.parent / "megadepth_tmp"
if tmp_dir.exists(): # The previous download failed.
shutil.rmtree(tmp_dir)
tmp_dir.mkdir(exist_ok=True, parents=True)
url_base = "https://cvg-data.inf.ethz.ch/megadepth/"
for tar_name, out_name in (
("Undistorted_SfM.tar.gz", self.conf.image_subpath),
("depth_undistorted.tar.gz", self.conf.depth_subpath),
("scene_info.tar.gz", self.conf.info_dir),
):
tar_path = tmp_dir / tar_name
torch.hub.download_url_to_file(url_base + tar_name, tar_path)
with tarfile.open(tar_path) as tar:
tar.extractall(path=tmp_dir)
tar_path.unlink()
shutil.move(tmp_dir / tar_name.split(".")[0], tmp_dir / out_name)
shutil.move(tmp_dir, data_dir)
def get_dataset(self, split):
assert self.conf.views in [1, 2, 3]
if self.conf.views == 3:
return _TripletDataset(self.conf, split)
else:
return _PairDataset(self.conf, split)
class _PairDataset(torch.utils.data.Dataset):
def __init__(self, conf, split, load_sample=True):
self.root = DATA_PATH / conf.data_dir
assert self.root.exists(), self.root
self.split = split
self.conf = conf
split_conf = conf[split + "_split"]
if isinstance(split_conf, (str, Path)):
scenes_path = scene_lists_path / split_conf
scenes = scenes_path.read_text().rstrip("\n").split("\n")
elif isinstance(split_conf, Iterable):
scenes = list(split_conf)
else:
raise ValueError(f"Unknown split configuration: {split_conf}.")
scenes = sorted(set(scenes))
if conf.load_features.do:
self.feature_loader = CacheLoader(conf.load_features)
self.preprocessor = ImagePreprocessor(conf.preprocessing)
self.images = {}
self.depths = {}
self.poses = {}
self.intrinsics = {}
self.valid = {}
# load metadata
self.info_dir = self.root / self.conf.info_dir
self.scenes = []
for scene in scenes:
path = self.info_dir / (scene + ".npz")
try:
info = np.load(str(path), allow_pickle=True)
except Exception:
logger.warning(
"Cannot load scene info for scene %s at %s.", scene, path
)
continue
self.images[scene] = info["image_paths"]
self.depths[scene] = info["depth_paths"]
self.poses[scene] = info["poses"]
self.intrinsics[scene] = info["intrinsics"]
self.scenes.append(scene)
if load_sample:
self.sample_new_items(conf.seed)
assert len(self.items) > 0
def sample_new_items(self, seed):
logger.info("Sampling new %s data with seed %d.", self.split, seed)
self.items = []
split = self.split
num_per_scene = self.conf[self.split + "_num_per_scene"]
if isinstance(num_per_scene, Iterable):
num_pos, num_neg = num_per_scene
else:
num_pos = num_per_scene
num_neg = None
if split != "train" and self.conf[split + "_pairs"] is not None:
# Fixed validation or test pairs
assert num_pos is None
assert num_neg is None
assert self.conf.views == 2
pairs_path = scene_lists_path / self.conf[split + "_pairs"]
for line in pairs_path.read_text().rstrip("\n").split("\n"):
im0, im1 = line.split(" ")
scene = im0.split("/")[0]
assert im1.split("/")[0] == scene
im0, im1 = [self.conf.image_subpath + im for im in [im0, im1]]
assert im0 in self.images[scene]
assert im1 in self.images[scene]
idx0 = np.where(self.images[scene] == im0)[0][0]
idx1 = np.where(self.images[scene] == im1)[0][0]
self.items.append((scene, idx0, idx1, 1.0))
elif self.conf.views == 1:
for scene in self.scenes:
if scene not in self.images:
continue
valid = (self.images[scene] != None) | ( # noqa: E711
self.depths[scene] != None # noqa: E711
)
ids = np.where(valid)[0]
if num_pos and len(ids) > num_pos:
ids = np.random.RandomState(seed).choice(
ids, num_pos, replace=False
)
ids = [(scene, i) for i in ids]
self.items.extend(ids)
else:
for scene in self.scenes:
path = self.info_dir / (scene + ".npz")
assert path.exists(), path
info = np.load(str(path), allow_pickle=True)
valid = (self.images[scene] != None) & ( # noqa: E711
self.depths[scene] != None # noqa: E711
)
ind = np.where(valid)[0]
mat = info["overlap_matrix"][valid][:, valid]
if num_pos is not None:
# Sample a subset of pairs, binned by overlap.
num_bins = self.conf.num_overlap_bins
assert num_bins > 0
bin_width = (
self.conf.max_overlap - self.conf.min_overlap
) / num_bins
num_per_bin = num_pos // num_bins
pairs_all = []
for k in range(num_bins):
bin_min = self.conf.min_overlap + k * bin_width
bin_max = bin_min + bin_width
pairs_bin = (mat > bin_min) & (mat <= bin_max)
pairs_bin = np.stack(np.where(pairs_bin), -1)
pairs_all.append(pairs_bin)
# Skip bins with too few samples
has_enough_samples = [len(p) >= num_per_bin * 2 for p in pairs_all]
num_per_bin_2 = num_pos // max(1, sum(has_enough_samples))
pairs = []
for pairs_bin, keep in zip(pairs_all, has_enough_samples):
if keep:
pairs.append(sample_n(pairs_bin, num_per_bin_2, seed))
pairs = np.concatenate(pairs, 0)
else:
pairs = (mat > self.conf.min_overlap) & (
mat <= self.conf.max_overlap
)
pairs = np.stack(np.where(pairs), -1)
pairs = [(scene, ind[i], ind[j], mat[i, j]) for i, j in pairs]
if num_neg is not None:
neg_pairs = np.stack(np.where(mat <= 0.0), -1)
neg_pairs = sample_n(neg_pairs, num_neg, seed)
pairs += [(scene, ind[i], ind[j], mat[i, j]) for i, j in neg_pairs]
self.items.extend(pairs)
if self.conf.views == 2 and self.conf.sort_by_overlap:
self.items.sort(key=lambda i: i[-1], reverse=True)
else:
np.random.RandomState(seed).shuffle(self.items)
def _read_view(self, scene, idx):
path = self.root / self.images[scene][idx]
# read pose data
K = self.intrinsics[scene][idx].astype(np.float32, copy=False)
T = self.poses[scene][idx].astype(np.float32, copy=False)
# read image
if self.conf.read_image:
img = load_image(self.root / self.images[scene][idx], self.conf.grayscale)
else:
size = PIL.Image.open(path).size[::-1]
img = torch.zeros(
[3 - 2 * int(self.conf.grayscale), size[0], size[1]]
).float()
# read depth
if self.conf.read_depth:
# depth_path = (
# self.root / self.conf.depth_subpath / scene / (path.stem + ".h5")
# )
depth_subpath = self.depths[scene][idx]
depth_id = depth_subpath.split('/')[-1][:-3]
assert depth_id == path.stem
depth_path = self.root / depth_subpath
with h5py.File(str(depth_path), "r") as f:
depth = f["/depth"].__array__().astype(np.float32, copy=False)
depth = torch.Tensor(depth)[None]
assert depth.shape[-2:] == img.shape[-2:]
else:
depth = None
# add random rotations
do_rotate = self.conf.p_rotate > 0.0 and self.split == "train"
if do_rotate:
p = self.conf.p_rotate
k = 0
if np.random.rand() < p:
k = np.random.choice(2, 1, replace=False)[0] * 2 - 1
img = np.rot90(img, k=-k, axes=(-2, -1))
if self.conf.read_depth:
depth = np.rot90(depth, k=-k, axes=(-2, -1)).copy()
K = rotate_intrinsics(K, img.shape, k + 2)
T = rotate_pose_inplane(T, k + 2)
name = path.name
data = self.preprocessor(img)
if depth is not None:
data["depth"] = self.preprocessor(depth, interpolation="nearest")["image"][
0
]
K = scale_intrinsics(K, data["scales"])
data = {
"name": name,
"scene": scene,
"T_w2cam": Pose.from_4x4mat(T),
"depth": depth,
"camera": Camera.from_calibration_matrix(K).float(),
**data,
}
if self.conf.load_features.do:
features = self.feature_loader({k: [v] for k, v in data.items()})
if do_rotate and k != 0:
# ang = np.deg2rad(k * 90.)
kpts = features["keypoints"].copy()
x, y = kpts[:, 0].copy(), kpts[:, 1].copy()
w, h = data["image_size"]
if k == 1:
kpts[:, 0] = w - y
kpts[:, 1] = x
elif k == -1:
kpts[:, 0] = y
kpts[:, 1] = h - x
else:
raise ValueError
features["keypoints"] = kpts
data = {"cache": features, **data}
return data
def __getitem__(self, idx):
if self.conf.reseed:
with fork_rng(self.conf.seed + idx, False):
return self.getitem(idx)
else:
return self.getitem(idx)
def getitem(self, idx):
if self.conf.views == 2:
if isinstance(idx, list):
scene, idx0, idx1, overlap = idx
else:
scene, idx0, idx1, overlap = self.items[idx]
data0 = self._read_view(scene, idx0)
data1 = self._read_view(scene, idx1)
data = {
"view0": data0,
"view1": data1,
}
data["T_0to1"] = data1["T_w2cam"] @ data0["T_w2cam"].inv()
data["T_1to0"] = data0["T_w2cam"] @ data1["T_w2cam"].inv()
data["overlap_0to1"] = overlap
data["name"] = f"{scene}/{data0['name']}_{data1['name']}"
else:
assert self.conf.views == 1
scene, idx0 = self.items[idx]
data = self._read_view(scene, idx0)
data["scene"] = scene
data["idx"] = idx
return data
def __len__(self):
return len(self.items)
class _TripletDataset(_PairDataset):
def sample_new_items(self, seed):
logging.info("Sampling new triplets with seed %d", seed)
self.items = []
split = self.split
num = self.conf[self.split + "_num_per_scene"]
if split != "train" and self.conf[split + "_pairs"] is not None:
if Path(self.conf[split + "_pairs"]).exists():
pairs_path = Path(self.conf[split + "_pairs"])
else:
pairs_path = DATA_PATH / "configs" / self.conf[split + "_pairs"]
for line in pairs_path.read_text().rstrip("\n").split("\n"):
im0, im1, im2 = line.split(" ")
assert im0[:4] == im1[:4]
scene = im1[:4]
idx0 = np.where(self.images[scene] == im0)
idx1 = np.where(self.images[scene] == im1)
idx2 = np.where(self.images[scene] == im2)
self.items.append((scene, idx0, idx1, idx2, 1.0, 1.0, 1.0))
else:
for scene in self.scenes:
path = self.info_dir / (scene + ".npz")
assert path.exists(), path
info = np.load(str(path), allow_pickle=True)
if self.conf.num_overlap_bins > 1:
raise NotImplementedError("TODO")
valid = (self.images[scene] != None) & ( # noqa: E711
self.depth[scene] != None # noqa: E711
)
ind = np.where(valid)[0]
mat = info["overlap_matrix"][valid][:, valid]
good = (mat > self.conf.min_overlap) & (mat <= self.conf.max_overlap)
triplets = []
if self.conf.triplet_enforce_overlap:
pairs = np.stack(np.where(good), -1)
for i0, i1 in pairs:
for i2 in pairs[pairs[:, 0] == i0, 1]:
if good[i1, i2]:
triplets.append((i0, i1, i2))
if len(triplets) > num:
selected = np.random.RandomState(seed).choice(
len(triplets), num, replace=False
)
selected = range(num)
triplets = np.array(triplets)[selected]
else:
# we first enforce that each row has >1 pairs
non_unique = good.sum(-1) > 1
ind_r = np.where(non_unique)[0]
good = good[non_unique]
pairs = np.stack(np.where(good), -1)
if len(pairs) > num:
selected = np.random.RandomState(seed).choice(
len(pairs), num, replace=False
)
pairs = pairs[selected]
for idx, (k, i) in enumerate(pairs):
# We now sample a j from row k s.t. i != j
possible_j = np.where(good[k])[0]
possible_j = possible_j[possible_j != i]
selected = np.random.RandomState(seed + idx).choice(
len(possible_j), 1, replace=False
)[0]
triplets.append((ind_r[k], i, possible_j[selected]))
triplets = [
(scene, ind[k], ind[i], ind[j], mat[k, i], mat[k, j], mat[i, j])
for k, i, j in triplets
]
self.items.extend(triplets)
np.random.RandomState(seed).shuffle(self.items)
def __getitem__(self, idx):
scene, idx0, idx1, idx2, overlap01, overlap02, overlap12 = self.items[idx]
data0 = self._read_view(scene, idx0)
data1 = self._read_view(scene, idx1)
data2 = self._read_view(scene, idx2)
data = {
"view0": data0,
"view1": data1,
"view2": data2,
}
data["T_0to1"] = data1["T_w2cam"] @ data0["T_w2cam"].inv()
data["T_0to2"] = data2["T_w2cam"] @ data0["T_w2cam"].inv()
data["T_1to2"] = data2["T_w2cam"] @ data1["T_w2cam"].inv()
data["T_1to0"] = data0["T_w2cam"] @ data1["T_w2cam"].inv()
data["T_2to0"] = data0["T_w2cam"] @ data2["T_w2cam"].inv()
data["T_2to1"] = data1["T_w2cam"] @ data2["T_w2cam"].inv()
data["overlap_0to1"] = overlap01
data["overlap_0to2"] = overlap02
data["overlap_1to2"] = overlap12
data["scene"] = scene
data["name"] = f"{scene}/{data0['name']}_{data1['name']}_{data2['name']}"
return data
def __len__(self):
return len(self.items)
def visualize(args):
conf = {
"min_overlap": 0.1,
"max_overlap": 0.7,
"num_overlap_bins": 3,
"sort_by_overlap": False,
"train_num_per_scene": 5,
"batch_size": 1,
"num_workers": 0,
"prefetch_factor": None,
"val_num_per_scene": None,
}
conf = OmegaConf.merge(conf, OmegaConf.from_cli(args.dotlist))
dataset = MegaDepth(conf)
loader = dataset.get_data_loader(args.split)
logger.info("The dataset has elements.", len(loader))
with fork_rng(seed=dataset.conf.seed):
images, depths = [], []
for _, data in zip(range(args.num_items), loader):
images.append(
[
data[f"view{i}"]["image"][0].permute(1, 2, 0)
for i in range(dataset.conf.views)
]
)
depths.append(
[data[f"view{i}"]["depth"][0] for i in range(dataset.conf.views)]
)
axes = plot_image_grid(images, dpi=args.dpi)
for i in range(len(images)):
plot_heatmaps(depths[i], axes=axes[i])
plt.show()
if __name__ == "__main__":
from .. import logger # overwrite the logger
parser = argparse.ArgumentParser()
parser.add_argument("--split", type=str, default="val")
parser.add_argument("--num_items", type=int, default=4)
parser.add_argument("--dpi", type=int, default=100)
parser.add_argument("dotlist", nargs="*")
args = parser.parse_intermixed_args()
visualize(args)